2,805 research outputs found

    Lift Enhancement for Low-Aspect-Ratio Wings with Periodic Excitation

    Get PDF
    In an effort to enhance lift on low-aspect-ratio rectangular flat-plate wings in low-Reynolds-number post-stall flows, periodic injection of momentum is considered along the trailing edge in this numerical study. The purpose of actuation is not to reattach the flow but to change the dynamics of the wake vortices such that the resulting lift force is increased. Periodic forcing is observed to be effective in increasing lift for various aspect ratios and angles of attack, achieving a similar lift enhancement attained by steady forcing with less momentum input. Through the investigation on the influence of the actuation frequency, it is also found that there exists a frequency at which the flow locks on to a time-periodic high-lift state

    Linear models for control of cavity flow oscillations

    Get PDF
    Models for understanding and controlling oscillations in the flow past a rectangular cavity are developed. These models may be used to guide control designs, to understand performance limits of feedback, and to interpret experimental results. Traditionally, cavity oscillations are assumed to be self-sustained: no external disturbances are necessary to maintain the oscillations, and amplitudes are limited by nonlinearities. We present experimental data which suggests that in some regimes, the oscillations may not be self-sustained, but lightly damped: oscillations are sustained by external forcing, such as boundary-layer turbulence. In these regimes, linear models suffice to describe the behaviour, and the final amplitude of oscillations depends on the characteristics of the external disturbances. These linear models are particularly appropriate for describing cavities in which feedback has been used for noise suppression, as the oscillations are small and nonlinearities are less likely to be important. It is shown that increasing the gain too much in such feedback control experiments can lead to a peak-splitting phenomenon, which is explained by the linear models. Fundamental performance limits indicate that peak splitting is likely to occur for narrow-bandwidth actuators and controllers

    Surging and plunging oscillations of an airfoil at low Reynolds number

    Get PDF
    We investigate the forces and unsteady flow structures associated with harmonic oscillations of an airfoil in the streamwise (surging) and transverse (plunging) directions in two-dimensional simulations at low Reynolds number. For the surging case, we show that there are specific frequencies where the wake instability synchronizes with the unsteady motion of the airfoil, leading to significant changes in the mean forces. Resonant behaviour of the time-averaged forces is observed near the vortex shedding frequency and its subharmonic; the behaviour is reminiscent of the dynamics of the generic nonlinear oscillator known as the Arnol’d tongue or the resonance horn. Below the wake instability frequency, there are two regimes where the fluctuating forces are amplified and attenuated, respectively. A detailed study of the flow structures associated with leading-edge vortex (LEV) growth and detachment are used to relate this behaviour with the LEV acting either in phase with the quasi-steady component of the forces for the amplification case, or out of phase for the attenuation case. Comparisons with wind tunnel measurements show that phenomenologically similar dynamics occur at higher Reynolds number. Finally, we show that qualitatively similar phenomena occur during both surging and plunging

    Modeling Dynamic Lift Response to Actuation

    Get PDF
    The dynamic lift response of an airfoil to sinusoidal amplitude variations from a synthetic jet actuator was studied. The wing was at a fixed angle of attack, and the actuator operated in a 'burst-mode' with a fixed duty cycle. The actuator burst mplitude was used as a control signal, which was varied between an ‘off ’ condition and the actuator saturation voltage. Three dimensionless frequencies were examined, corresponding to k = [(πfc)/(U∞)] = 0.064, 0.128, and 0.25. Hysteresis loops in the lift increment were observed, whose shapes were dependent on the control frequency. Three different approaches to modeling the lift increment response were explored: a linear convolution approach, a nonlinear time delay and decay model, and a combination of those two. The linear convolution captures the high frequency content of the lift response, but becomes inaccurate when the actuator burst period is less than 3.5 convective times. The time delay and decay model reproduces the low frequency component of the lift response, but not the high frequency. When the control frequency becomes large, (k = 0.25), then the largest time-varying lift increment is produced near the minimum of the actuator voltage

    Numerical Simulations of the Transient Flow Response of a 3D, Low-Aspect-Ratio Wing to Pulsed Actuation

    Get PDF
    Numerical simulations of the natural and actuated unsteady flow over a three-dimensional low-aspect ratio wing are performed using Lattice Boltzmann method. The LBM simulations match the flow conditions and the detailed wing geometry from previous experiments, including the actuators that are installed internally along the leading edge of the wing. The present study focuses on the transient lift response to short-duration square-wave actuation, for the wing in a uniform flow at five different angles of attack. Overall, both mean and unsteady numerical results show good agreement with the experimental data, in particular at the post-stall angle of attack 19°, where the maximum lift enhancement occurs. At that angle of attack, the effects of the actuation strength and duration are investigated. In general, the lift response to a single pulse increases with increasing actuator mass-flow rate and pulse duration

    Lift Coefficient Estimation for a Rapidly Pitching Airfoil

    Get PDF
    We develop a method for estimating the instantaneous lift coefficient on a rapidly pitching airfoil that uses a small number of pressure sensors and a measurement of the angle of attack. The approach assimilates four surface pressure measurements with a modified nonlinear state space model (Goman-Khrabrov model) through a Kalman filter. The error of lift coefficient estimates based only on a weighted-sum of the measured pressures are found to be noisy and biased, which leads to inaccurate estimates. The estimate is improved by including the predictive model in an conventional Kalman filter. The Goman-Khrabrov model is shown to be a linear parameter-varying system and can therefore be used in the Kalman filter without the need for linearization. Additional improvement is realized by modifying the algorithm to provide more accurate estimate of the lift coefficient. The improved Kalman filtering approach results in a bias-free lift coefficient estimate that is more precise than either the pressure-based estimate or the Goman-Khrabrov model on their own. The new method will enable performance enhancements in aerodynamic systems whose performance relies on lift

    Network analysis reveals open forums and echo chambers in social media discussions of climate change

    Get PDF
    Open Access articleAction to tackle the complex and divisive issue of climate change will be strongly influenced by public perception. Online social media and associated social networks are an increasingly important forum for public debate and are known to influence individual attitudes and behaviours yet online discussions and social networks related to climate change are not well understood. Here we construct several forms of social network for users communicating about climate change on the popular microblogging platform Twitter. We classify user attitudes to climate change based on message content and nd that social networks are characterised by strong attitude-based homophily and segregation into polarised "sceptic" and "activist" groups. Most users interact only with like-minded others, in communities dominated by a single view. However, we also nd mixed-attitude communities in which sceptics and activists frequently interact. Messages between like-minded users typically carry positive sentiment, while messages between sceptics and activists carry negative sentiment. We identify a number of general patterns in user behaviours relating to engagement with alternative views. Users who express negative sentiment are themselves the target of negativity. Users in mixed- attitude communities are less likely to hold a strongly polarised view, but more likely to express negative sentiment towards other users with di ering views. Overall, social media discussions of climate change often occur within polarising "echo chambers", but also within "open forums", mixed-attitude communities that reduce polarisation and stimulate debate. Our results have implications for public engagement with this important global challenge.Engineering and Physical Sciences Research Council (EPSRC) - Bridging the Gaps initiativ

    Control of a Semi-Circular Planform Wing in a "Gusting" Unsteady Free Stream Flow II: Modeling and Feedback Design

    Get PDF
    Active flow control has been demonstrated in Part I of this article to modify the lift, drag and pitching moments on a semi-circular wing during "gusting" flow conditions. The low aspect ratio wing, AR = 2.54, is mounted on a captive trajectory system that responds to the instantaneous lift force and pitching moment and the "gusting" flow is simulated by a 0.2 Hz oscillation of the free stream speed of the wind tunnel. The mean chord Reynolds number of the wing is 70,600. Active flow control occurs along the leading edge of the airfoil, which contains 16 spatially localized micro-valve actuators. Details of the experimental setup, a quasi steady state lift model and results involving open-loop proof of concept validation are provided in Part I of this paper. Here we outline principles and considerations associated with close loop design that will be discussed in our talk

    Isolation of Unknown Genes from Human Bone Marrow by Differental Screening and Single-Pass cDNA Sequences Determination

    Get PDF
    A cDNA sequencing project was initiated to characterize gene expression in human bone marrow and develop strategies to isolate novel genes. Forty-eight random cDNAs from total human bone marrow were subjected to single-pass DNA sequence analysis to determine a limited complexity of mRNAs expressed in the bone marrow. Overall, 8 cDNAs (17%) showed no similarity to known sequences. Information from DNA sequence analysis was used to develop a differential prescreen to subtract unwanted cDNAs and to enrich for unknown cDNAs. Forty-eight cDNAs that were negative with a complex probe were subject to single-pass DNA sequence determination. Of these prescreened cDNAs, the number of unknown sequences increased to 23 (48%). Unknown cDNAs were also characterized by RNA expression analysis using 25 different human leukemic cell lines. Of 13 unknown cDNAs tested, 10 were expressed in all cell types tested and 3 revealed a hematopoietic lineage-restricted expression pattern. Interestingly, while a total of only 96 bone marrow cDNAs were sequenced, 31 of these cDNAs represent sequences from unknown genes and 12 showed significant similarities to sequences in the data bases. One cDNA revealed a significant similarity to a serine/threonine-protein kinase at the amino acid level (56% identity for 123 amino acids) and may represent a previously unknown kinase. Differential screening techniques coupled with single-pass cDNA sequence analysis may prove to be a powerful and simple technique to examine developmental gene expression
    corecore