448 research outputs found

    Characterisation of Cryogenic Material Properties of 3D-Printed Superconducting Niobium using a 3D Lumped Element Microwave Cavity

    Full text link
    We present an experimental characterisation of the electrical properties of 3D-printed Niobium. The study was performed by inserting a 3D-printed Nb post inside an Aluminium cylindrical cavity, forming a 3D lumped element re-entrant microwave cavity resonator. The resonator was cooled to temperatures below the critical temperature of Niobium (9.25K) and then Aluminium (1.2K), while measuring the quality factors of the electromagnetic resonances. This was then compared with finite element analysis of the cavity and a measurement of the same cavity with an Aluminium post of similar dimensions and frequency, to extract the surface resistance of the Niobium post. The 3D-printed Niobium exhibited a transition to the superconducting state at a similar temperature to the regular Niobium, as well as a surface resistance of 3.1×1043.1\times10^{-4} Ω\Omega. This value was comparable to many samples of traditionally machined Niobium previously studied without specialised surface treatment. Furthermore, this study demonstrates a simple new method for characterizing the material properties of a relatively small and geometrically simple sample of superconductor, which could be easily applied to other materials, particularly 3D-printed materials. Further research and development in additive manufacturing may see the application of 3D-printed Niobium in not only superconducting cavity designs, but in the innovative technology of the future.Comment: 5 pages, 4 figure

    The European Parliament and the UK’s renegotiation: what do MEPs think? Part II

    Get PDF
    Debates about the future of UK-EU relations have paid little attention to the European Parliament. There have been no studies comparable to those that have looked into how member states view the renegotiation or might respond to a Brexit. Media reports indicate that the European Commission taskforce handling the UK renegotiation has even looked into ways of avoiding the Parliament becoming involved. Questions persist, however, as to whether the Parliament can be ignored. If Britain votes to leave then the EU Treaty’s withdrawal clause guarantees the Parliament a say in the final deal. To find out the views of the European Parliament BrexitVote is running a series – compiled by Tim Oliver – in which MEPs from across the Parliament set out what they think of the UK-EU renegotiation, the idea of Brexit and – most importantly – what role they think the Parliament will play. In this, the second part of the series, we hear from MEPs in the European People’s Party (EPP)

    Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen) were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control). Model fecal deposits (<it>n </it>= 3) were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of <it>tet</it>, <it>sul </it>and <it>erm </it>resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified <it>16S-rRNA.</it></p> <p>Results</p> <p>The concentrations of <it>16S-rRNA </it>in feces were similar across treatments and increased by day 56, declining thereafter. DGGE profiles of <it>16S-rRNA </it>differed amongst treatments and with time, illustrating temporal shifts in microbial communities. All measured resistance gene determinants were quantifiable in feces after 175 days. Antimicrobial treatment differentially affected the abundance of certain resistance genes but generally not their persistence. In the first 56 days, concentrations of <it>tet</it>(B), <it>tet</it>(C), <it>sul1, sul2</it>, <it>erm</it>(A) tended to increase, and decline thereafter, whereas <it>tet</it>(M) and <it>tet</it>(W) gradually declined over 175 days. At day 7, the concentration of <it>erm</it>(X) was greatest in feces from cattle fed tylosin, compared to all other treatments.</p> <p>Conclusion</p> <p>The abundance of genes coding for antimicrobial resistance in bovine feces can be affected by inclusion of antibiotics in the feed. Resistance genes can persist in feces from cattle beyond 175 days with concentrations of some genes increasing with time. Management practices that accelerate DNA degradation such as frequent land application or composting of manure may reduce the extent to which bovine feces serves as a reservoir of antimicrobial resistance.</p

    Outcome-Driven Reinforcement Learning via Variational Inference

    Full text link
    While reinforcement learning algorithms provide automated acquisition of optimal policies, practical application of such methods requires a number of design decisions, such as manually designing reward functions that not only define the task, but also provide sufficient shaping to accomplish it. In this paper, we view reinforcement learning as inferring policies that achieve desired outcomes, rather than as a problem of maximizing rewards. To solve this inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function which can be learned directly from environment interactions. From the corresponding variational objective, we also derive a new probabilistic Bellman backup operator and use it to develop an off-policy algorithm to solve goal-directed tasks. We empirically demonstrate that this method eliminates the need to hand-craft reward functions for a suite of diverse manipulation and locomotion tasks and leads to effective goal-directed behaviors.Comment: Published in Advances in Neural Information Processing Systems 34 (NeurIPS 2021

    Distribution and characterization of ampicillin- and tetracycline-resistant Escherichia coli from feedlot cattle fed subtherapeutic antimicrobials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feedlot cattle in North America are routinely fed subtherapeutic levels of antimicrobials to prevent disease and improve the efficiency of growth. This practice has been shown to promote antimicrobial resistance (AMR) in subpopulations of intestinal microflora including <it>Escherichia coli</it>. To date, studies of AMR in feedlot production settings have rarely employed selective isolation, therefore yielding too few AMR isolates to enable characterization of the emergence and nature of AMR in <it>E. coli </it>as an indicator bacterium. <it>E. coli </it>isolates (<it>n </it>= 531) were recovered from 140 cattle that were housed (10 animals/pen) in 14 pens and received no dietary antimicrobials (control - 5 pens, CON), or were intermittently administered subtherapeutic levels of chlortetracycline (5 pens-T), chlortetracycline + sulfamethazine (4 pens-TS), or virginiamycin (5 pens-V) for two separate periods over a 9-month feeding period. Phenotype and genotype of the isolates were determined by susceptibility testing and pulsed field gel electrophoresis and distribution of characterized isolates among housed cattle reported. It was hypothesized that the feeding of subtherapeutic antibiotics would increase the isolation of distinct genotypes of AMR <it>E. coli </it>from cattle.</p> <p>Results</p> <p>Overall, patterns of antimicrobial resistance expressed by <it>E. coli </it>isolates did not change among diet groups (CON vs. antibiotic treatments), however; isolates obtained on selective plates (i.e., M<sup>A</sup>,M<sup>T</sup>), exhibited multi-resistance to sulfamethoxazole and chloramphenicol more frequently when obtained from TS-fed steers than from other treatments. Antibiograms and PFGE patterns suggested that AMR <it>E. coli </it>were readily transferred among steers within pens. Most M<sup>T </sup>isolates possessed the <it>tet</it>(B) efflux gene (58.2, 53.5, 40.8, and 50.6% of isolates from CON, T, TS, and V steers, respectively) whereas among the M<sup>A </sup>(ampicillin-resistant) isolates, the <it>tem1</it>-like determinant was predominant (occurring in 50, 66.7, 80.3, and 100% of isolates from CON, T, TS, and V steers, respectively).</p> <p>Conclusions</p> <p>Factors other than, or in addition to subtherapeutic administration of antibiotics influence the establishment and transmission of AMR <it>E. coli </it>among feedlot cattle.</p

    The production and characterization of a new active lipase from Acremonium alcalophilum using a plant bioreactor

    Get PDF
    Background: Microorganisms are the most proficient decomposers in nature, using secreted enzymes in the hydrolysis of lignocellulose. As such, they present the most abundant source for discovery of new enzymes. Acremonium alcalophilum is the only known cellulolytic fungus that thrives in alkaline conditions and can be cultured readily in the laboratory. Its optimal conditions for growth are 30°C and pH 9.0-9.2. The genome sequence of Acremonium alcalophilum has revealed a large number of genes encoding biomass-degrading enzymes. Among these enzymes, lipases are interesting because of several industrial applications including biofuels, detergent, food processing and textile industries. Results: We identified a lipA gene in the genome sequence of Acremonium alcalophilum, encoding a protein with a predicted lipase domain with weak sequence identity to characterized enzymes. Unusually, the predicted lipase displays ≈ 30% amino acid sequence identity to both feruloyl esterase and lipase of Aspergillus niger. LipA, when transiently produced in Nicotiana benthamiana, accumulated to over 9% of total soluble protein. Plant-produced recombinant LipA is active towards p-nitrophenol esters of various carbon chain lengths with peak activity on medium-chain fatty acid (C8). The enzyme is also highly active on xylose tetra-acetate and oat spelt xylan. These results suggests that LipA is a novel lipolytic enzyme that possesses both lipase and acetylxylan esterase activity. We determined that LipA is a glycoprotein with pH and temperature optima at 8.0 and 40°C, respectively. Conclusion: Besides being the first heterologous expression and characterization of a gene coding for a lipase from A. alcalophilum, this report shows that LipA is very versatile exhibiting both acetylxylan esterase and lipase activities potentially useful for diverse industry sectors, and that tobacco is a suitable bioreactor for producing fungal proteins

    Effects of inoculation of corn silage with Lactobacillus hilgardii and Lactobacillus buchneri on silage quality, aerobic stability, nutrient digestibility, and growth performance of growing beef cattle

    Get PDF
    This study evaluated the effects of inoculation of whole crop corn silage with a mixture of heterofermentative lactic acid bacteria (LAB) composed of Lactobacillus hilgardii and Lactobacillus buchneri on ensiling, aerobic stability, ruminal fermentation, total tract nutrient digestibility, and growth performance of beef cattle. Uninoculated control corn silage (CON) and silage inoculated with 3.0 × 105 cfu g-1 of LAB containing 1.5 × 105 cfu g-1 of L. hilgardii CNCM I-4785 and 1.5 × 105 cfu g-1 of L. buchneri NCIMB 40788 (INOC) were ensiled in silo bags. The pH did not differ (P > 0.05) between the two silages during ensiling but was greater (P 0.05) between heifers fed the two silages, while there was a tendency (P ≤ 0.07) for lower CP and starch digestibility for heifers fed INOC than CON. Total nitrogen (N) intake and N retention were lower (P ≤ 0.04) for heifers fed INOC than CON. Dry matter intake as a percentage of BW was lower (P < 0.04) and there was a tendency for improved feed efficieny (G:F; P = 0.07) in steers fed INOC vs. CON silage. The NEm and NEg contents were greater for INOC than CON diets. Results indicate that inoculation with a mixture of L. hilgardii and L. buchneri improved the aerobic stability of corn silage. Improvements in G:F of growing steers fed INOC silage even though the total tract digestibility of CP and starch tended to be lower for heifers fed INOC are likely because the difference in BW and growth requirements of these animals impacted the growth performance and nutrient utilization and a greater proportion of NDICP in INOC than CON.Fil: Nair, Jayakrishnan. Lethbridge Research Centre; CanadáFil: Huaxin, Niu. Inner Mongolia University for Nationals; ChinaFil: Andrada, Lidia Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Yang, Hee-Eun. Lethbridge Research Centre; CanadáFil: Chevaux, Eric. Lallemand SAS; FranciaFil: Drouin, Pascal. Lallemand Specialties Inc; Estados UnidosFil: McAllister, Tim A.. Lethbridge Research Centre; CanadáFil: Wang, Yuxi. Lethbridge Research Centre; Canad

    Synergism of Cattle and Bison Inoculum on Ruminal Fermentation and Select Bacterial Communities in an Artificial Rumen (Rusitec) Fed a Barley Straw Based Diet

    Get PDF
    This study evaluated the effect of increasing the proportion of bison relative to cattle inoculum on fermentation and microbial populations within an artificial rumen (Rusitec). The experiment was a completely randomized design with a factorial treatment structure (proportion cattle:bison inoculum; 0:100, 33:67, 67:33 and 100:0) replicated in two Rusitec apparatuses (n=8 fermenters). The experiment was 15 d with 8 d of adaptation and 7 d of sampling. Fermenters were fed a diet of 70:30 barley straw:concentrate (DM basis). True digestibility of DM was determined after 48 h of incubation from d 13-15, and daily ammonia (NH3) and volatile fatty acid (VFA) production were measured on d 9-12. Protozoa counts were determined at d 9, 11, 13 and 15 and particle-associated bacteria (PAB) from d 13-15. Select bacterial populations in the PAB were measured using RT-qPCR. Fermenter was considered the experimental unit and day of sampling as a repeated measure. Increasing the proportion of bison inoculum resulted in a quadratic effect (P0.05). Increasing bison inoculum linearly increased (P<0.05) concentrate aNDF disappearance, total and concentrate N disappearance as well as total daily VFA and acetate production. A positive quadratic response (P<0.05) was observed for daily NH3-N, propionate, butyrate, valerate, isovalerate and isobutyrate production, as well as the acetate:propionate ratio. Increasing the proportion of bison inoculum linearly increased (P<0.05) total protozoa numbers. No effects were observed on pH, total gas and methane production, microbial N synthesis, or copies of 16S rRNA associated with total bacteria, Selenomonas ruminantium or Prevotella bryantii. Increasing bison inoculum had a quadratic effect (P<0.05) on Fibrobacter succinogenes, and tended to linearly (P<0.10) increase Ruminococcus flavefaciens and decrease (P<0.05) Ruminococcus albus copy numbers. In conclusion, bison inoculum increased the degradation of feed protein and fibre. A mixture of cattle and bison rumen inoculum acted synergistically, increasing the DM and aNDF disappearance of barley straw
    corecore