3 research outputs found

    The Multiple Uses of Polypropylene/Polyethylene Terephthalate Microfibrillar Composite Structures to Support Waste Management—Composite Processing and Properties

    No full text
    Composite processing and subsequent characterization of microfibrillar composites (MFC) were the focus of this work. Compression molding of wound MFC filaments was used to fabricate MFC composites. The MFC composites were composed of polypropylene (PP) as matrix materials and polyethylene terephthalate (PET) as reinforcement fibers. The PP/PET blends were mixed with PET contents ranging from 22 wt% to 45 wt%. The effect of processing parameters, pressure, temperature, and holding time on the mechanical properties of the MFCs was investigated. Tensile tests were conducted to optimize the processing parameter and weight ratio of PET. Tensile strength and modulus increased with the increase in PET content. PP/45 wt% PET MFC composites properties reached the value of PP/30 wt% GF. Falling weight tests were conducted on MFC composites. The MFC composites showed the ability to absorb the impact energy compared to neat PP and PP/30 wt% GF

    CtpB Assembles a Gated Protease Tunnel Regulating Cell-Cell Signaling during Spore Formation in Bacillus subtilis

    Get PDF
    Spore formation in Bacillus subtilis relies on a regulated intramembrane proteolysis (RIP) pathway that synchronizes mother-cell and forespore development. To address the molecular basis of this SpoIV transmembrane signaling, we carried out a structure-function analysis of the activating protease CtpB. Crystal structures reflecting distinct functional states show that CtpB constitutes a ring-like protein scaffold penetrated by two narrow tunnels. Access to the proteolytic sites sequestered within these tunnels is controlled by PDZ domains that rearrange upon substrate binding. Accordingly, CtpB resembles a minimal version of a self-compartmentalizing protease regulated by a unique allosteric mechanism. Moreover, biochemical analysis of the PDZ-gated channel combined with sporulation assays reveal that activation of the SpoIV RIP pathway is induced by the concerted activity of CtpB and a second signaling protease, SpoIVB. This proteolytic mechanism is of broad relevance for cell-cell communication, illustrating how distinct signaling pathways can be integrated into a single RIP module

    N-glycans of recombinant human acid α-glucosidase expressed in the milk of transgenic rabbits

    No full text
    Pompe disease is a lysosomal glycogen storage disorder characterized by acid α-glucosidase (GAA) deficiency. More than 110 different pathogenic mutations in the gene encoding GAA have been observed. Patients with this disease are being treated by intravenous injection of recombinant forms of the enzyme. Focusing on recombinant approaches to produce the enzyme means that specific attention has to be paid to the generated glycosylation patterns. Here, human GAA was expressed in the mammary gland of transgenic rabbits. The N-linked glycans of recombinant human GAA (rhAGLU), isolated from the rabbit milk, were released by peptide-N4-(N-acetyl-β-glucosaminyl)asparagine amidase F. The N-glycan pool was fractionated and purified into individual components by a combination of anion-exchange, normal-phase, and Sambucus nigra agglutinin-affinity chromatography. The structures of the components were analyzed by 500 MHz one-dimensional and 600 MHz cryo two-dimensional (total correlation spectroscopy [TOCSY] nuclear Overhauser enhancement spectroscopy)1H nuclear magnetic resonance spectroscopy, combined with two-dimensional31P-filtered1H-1H TOCSY spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and high-performance liquid chromatography (HPLC)-profiling of 2-aminobenzamide-labeled glycans combined with exoglycosidase digestions. The recombinant rabbit glycoprotein contained a broad array of different N-glycans, comprising oligomannose-, hybrid-, and complex-type structures. Part of the oligomannose-type glycans showed the presence of phospho-diester-bridged N-acetylglucosamine. For the complex-type glycans (partially) (α2-6)-sialylated (nearly only N-acetylneuraminic acid) diantennary structures were found; part of the structures were (α1-6)-core-fucosylated or (α1-3)-fucosylated in the upper antenna (Lewis x). Using HPLC-mass spectrometry of glycopeptides, information was generated with respect to the site-specific location of the various glycans
    corecore