47 research outputs found

    Using a System Identification Approach to Investigate Subtask Control during Human Locomotion

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Here we apply a control theoretic view of movement to the behavior of human locomotion with the goal of using perturbations to learn about subtask control. Controlling one’s speed and maintaining upright posture are two critical subtasks, or underlying functions, of human locomotion. How the nervous system simultaneously controls these two subtasks was investigated in this study. Continuous visual and mechanical perturbations were applied concurrently to subjects (n=20) as probes to investigate these two subtasks during treadmill walking. Novel application of harmonic transfer function (HTF) analysis to human motor behavior was used, and these HTFs were converted to the time-domain based representation of phase-dependent impulse response functions (_IRFs). These _IRFs were used to identify the mapping from perturbation inputs to kinematic and electromyographic (EMG) outputs throughout the phases of the gait cycle. Mechanical perturbations caused an initial, passive change in trunk orientation and, at some phases of stimulus presentation, a corrective trunk EMG and orientation response. Visual perturbations elicited a trunk EMG response prior to a trunk orientation response, which was subsequently followed by an anterior-posterior displacement response. This finding supports the notion that there is a temporal hierarchy of functional subtasks during locomotion in which the control of upper-body posture precedes other subtasks. Moreover, the novel analysis we apply has the potential to probe a broad range of rhythmic behaviors to better understand their neural control

    Does visual feedback during walking result in similar improvements in trunk control for young and older healthy adults?

    Get PDF
    Most current applications of visual feedback to improve postural control are limited to a fixed base of support and produce mixed results regarding improved postural control and transfer to functional tasks. Currently there are few options available to provide visual feedback regarding trunk motion while walking. We have developed a low cost platform to provide visual feedback of trunk motion during walking. Here we investigated whether augmented visual position feedback would reduce trunk movement variability in both young and older healthy adults. The subjects who participated were 10 young and 10 older adults. Subjects walked on a treadmill under conditions of visual position feedback and no feedback. The visual feedback consisted of anterior-posterior (AP) and medial-lateral (ML) position of the subject’s trunk during treadmill walking. Fourier transforms of the AP and ML trunk kinematics were used to calculate power spectral densities which were integrated as frequency bins “below the gait cycle” and “gait cycle and above” for analysis purposes. Visual feedback reduced movement power at very low frequencies for lumbar and neck translation but not trunk angle in both age groups. At very low frequencies of body movement, older adults had equivalent levels of movement variability with feedback as young adults without feedback. Lower variability was specific to translational (not angular) trunk movement. Visual feedback did not affect any of the measured lower extremity gait pattern characteristics of either group, suggesting that changes were not invoked by a different gait pattern. Reduced translational variability while walking on the treadmill reflects more precise control maintaining a central position on the treadmill. Such feedback may provide an important technique to augment rehabilitation to minimize body translation while walking. Individuals with poor balance during walking may benefit from this type of training to enhance path consistency during over-ground locomotion.https://doi.org/10.1186/1743-0003-10-11

    Potenziale der schwachen künstlichen Intelligenz für die betriebliche Ressourceneffizienz

    Get PDF
    POTENZIALE DER SCHWACHEN KÜNSTLICHEN INTELLIGENZ FÜR DIE BETRIEBLICHE RESSOURCENEFFIZIENZ Potenziale der schwachen künstlichen Intelligenz für die betriebliche Ressourceneffizienz / Friedrich, Robert (Rights reserved) ( -

    The political geography of religious radicalism. A compendium of selected case studies from around the globe

    Get PDF
    Religion has neither gone away nor remained irrelevant in our world today. There is no day that we do not hear news about religion in the media. The news we hear about religion and violence, however, appears to dominate the headlines. Although the history of religions and violence is not a new one, since September 11, 2001 there has been a growing concern about religious extremism and terrorism. At the same time, there is a corresponding interest in the subject of religion and violence among many disciplines. In the course GEO-83 “Political Geography of Religious Radicalism”, we offered students an excursion into the ambivalent world of religion and conflict through an exploration of different theoretical perspectives and approaches, case studies, seminal and class discussions and extensive literature review. The unique angle of interrogation that political geography offers in terms of the spatial dimensions and the power relations between different actors as well as the discursive aspects of interreligious conflicts and extremism has proved very valuable in generating insights on this subject matter. This volume is an attempt by students of the M.A. “Human Geography – Global Studies” programme of the University of Tübingen to demonstrate acquaintance with the approach of political geography to the study of religious violence and extremism. The students took on some of the most challenging conflicts and religious insurgencies confronting the world and offered insights using diverse theoretical and analytical frameworks. The analysis contained in each chapter was based on secondary data. Thus, limitations are set based on the availability of and access to data. Given the contested nature of religious conflicts and extremism, the reader is invited to consider all the articles in this volume as primarily an academic exercise with no intention to promote a certain narrative or to take sides. Knowledge is always incremental. Therefore, what is presented here is intended to increase our understanding of the phenomenon and to stimulate further research and efforts at finding solutions to the various conflicts. No doubt, this exercise has exposed the students to the rigour of scientific writing. This experience will remain invaluable to them in their continuing academic pursuit as well as in their future endeavours. The lecturers also found this experience to be highly rewarding. The process was quite daunting, but the commitment and the dedication of the students paid off

    Asymmetric sensory reweighting in human upright stance.

    Get PDF
    To investigate sensory reweighting as a fundamental property of sensor fusion during standing, we probed postural control with simultaneous rotations of the visual scene and surface of support. Nineteen subjects were presented with pseudo-random pitch rotations of visual scene and platform at the ankle to test for amplitude dependencies in the following conditions: low amplitude vision: high amplitude platform, low amplitude vision: low amplitude platform, and high amplitude vision: low amplitude platform. Gain and phase of frequency response functions (FRFs) to each stimulus were computed for two body sway angles and a single weighted EMG signal recorded from seven muscles. When platform stimulus amplitude was increased while visual stimulus amplitude remained constant, gain to vision increased, providing strong evidence for inter-modal reweighting between vision and somatosensation during standing. Intra-modal reweighting of vision was also observed as gains to vision decreased as visual stimulus amplitude increased. Such intra-modal and inter-modal amplitude dependent changes in gain were also observed in muscular activity. Gains of leg segment angle and muscular activity relative to the platform, on the other hand, showed only intra-modal reweighting. That is, changing platform motion amplitude altered the responses to both visual and support surface motion whereas changing visual scene motion amplitude did not significantly affect responses to support surface motion, indicating that the sensory integration scheme between somatosensation (at the support surface) and vision is asymmetric

    Identification of the Plant for Upright Stance in Humans: Multiple Movement Patterns From a Single Neural Strategy

    No full text
    We determined properties of the plant during human upright stance using a closed-loop system identification method originally applied to human postural control by another group. To identify the plant, which was operationally defined as the mapping from muscle activation (rectified EMG signals) to body segment angles, we rotated the visual scene about the axis through the subject's ankles using a sum-of-sines stimulus signal. Because EMG signals from ankle muscles and from hip and lower trunk muscles showed similar responses to the visual perturbation across frequency, we combined EMG signals from all recorded muscles into a single plant input. Body kinematics were described by the trunk and leg angles in the sagittal plane. The phase responses of both angles to visual scene angle were similar at low frequencies and approached a difference of ∼150° at higher frequencies. Therefore we considered leg and trunk angles as separate plant outputs. We modeled the plant with a two-joint (ankle and hip) model of the body, a second-order low-pass filter from EMG activity to active joint torques, and intrinsic stiffness and damping at both joints. The results indicated that the in-phase (ankle) pattern was neurally generated, whereas the out-of-phase pattern was caused by plant dynamics. Thus a single neural strategy leads to multiple kinematic patterns. Moreover, estimated intrinsic stiffness in the model was insufficient to stabilize the plant

    Dynamic reweighting of three modalities for sensor fusion.

    Get PDF
    We simultaneously perturbed visual, vestibular and proprioceptive modalities to understand how sensory feedback is re-weighted so that overall feedback remains suited to stabilizing upright stance. Ten healthy young subjects received an 80 Hz vibratory stimulus to their bilateral Achilles tendons (stimulus turns on-off at 0.28 Hz), a ± 1 mA binaural monopolar galvanic vestibular stimulus at 0.36 Hz, and a visual stimulus at 0.2 Hz during standing. The visual stimulus was presented at different amplitudes (0.2, 0.8 deg rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a change in gain to vibration and galvanic vestibular stimulation, both intermodal effects. The results showed a clear intramodal visual effect, indicating a de-emphasis on vision when the amplitude of visual stimulus increased. At the same time, an intermodal visual-proprioceptive reweighting effect was observed with the addition of vibration, which is thought to change proprioceptive inputs at the ankles, forcing the nervous system to rely more on vision and vestibular modalities. Similar intermodal effects for visual-vestibular reweighting were observed, suggesting that vestibular information is not a "fixed" reference, but is dynamically adjusted in the sensor fusion process. This is the first time, to our knowledge, that the interplay between the three primary modalities for postural control has been clearly delineated, illustrating a central process that fuses these modalities for accurate estimates of self-motion

    Development of multisensory reweighting is impaired for quiet stance control in children with developmental coordination disorder (DCD).

    Get PDF
    Developmental Coordination Disorder (DCD) is a leading movement disorder in children that commonly involves poor postural control. Multisensory integration deficit, especially the inability to adaptively reweight to changing sensory conditions, has been proposed as a possible mechanism but with insufficient characterization. Empirical quantification of reweighting significantly advances our understanding of its developmental onset and improves the characterization of its difference in children with DCD compared to their typically developing (TD) peers.Twenty children with DCD (6.6 to 11.8 years) were tested with a protocol in which visual scene and touch bar simultaneously oscillateded medio-laterally at different frequencies and various amplitudes. Their data were compared to data on TD children (4.2 to 10.8 years) from a previous study. Gains and phases were calculated for medio-lateral responses of the head and center of mass to both sensory stimuli. Gains and phases were simultaneously fitted by linear functions of age for each amplitude condition, segment, modality and group. Fitted gains and phases at two comparison ages (6.6 and 10.8 years) were tested for reweighting within each group and for group differences. Children with DCD reweight touch and vision at a later age (10.8 years) than their TD peers (4.2 years). Children with DCD demonstrate a weak visual reweighting, no advanced multisensory fusion and phase lags larger than those of TD children in response to both touch and vision.Two developmental perspectives, postural body scheme and dorsal stream development, are provided to explain the weak vision reweighting. The lack of multisensory fusion supports the notion that optimal multisensory integration is a slow developmental process and is vulnerable in children with DCD

    FRFS from platform angle to segment angles.

    No full text
    <p>A–B: Gain and phase of FRF from platform angle to leg segment angle. C–D: Gain and phase of FRF from platform angle to trunk segment angle. Error bars indicate bootstrapped standard error. Symbols p and v at individual frequency bins indicate a significant effect of increasing the amplitude of the visual perturbation or platform perturbation, respectively.</p
    corecore