14 research outputs found
Resonator-Quantenelektrodynamik auf einem Mikrofallenchip
In der vorliegenden Dissertation werden Experimente zur Resonator-Quantenelektrodynamik auf einem Mikrofallenchip beschrieben. Dabei konnte u. a. erstmals einzelne, in einer Chipfalle gefangene Atome detektiert werden. Hierfür wurde im Rahmen dieser Arbeit ein neuartiger optischer Mikroresonator entwickelt, der sich dank seiner
Miniaturisierung mit der in unserer Arbeitsgruppe eingeführten Mikrofallentechnik zur Manipulation ultrakalter Atome kombinieren lässt. Für diesen Resonator werden Glasfaserenden als Spiegelsubstrate benutzt, zwischen denen sich eine stehende Lichtwelle ausbildet. Mit einem solchen Faser-Fabry{Perot-Resonator erzielen wir eine Finesse von bis zu F~37 000. Aufgrund der kleinen Modenvolumina kann trotz moderater Resonatorgüte die kohärente Wechselwirkung zwischen einem Atom und einem Photon so groß gemacht werden, dass das Regime der starken Atom-Resonator-Kopplung erreicht wird. Für die Ein-Atom-Ein-Photon-Kopplungsrate und die Ein-Atom-Ein-Photon-Kooperativität werden dabei Rekordwerte von g0 = 2Pi300MHz bzw. C0 = 210 erzielt.
Ebenso konnte erstmals das Regime starker Kopplung zwischen einem Bose-Einstein-Kondensat (BEC) und dem Feld eines Resonators hoher Güte erreicht werden. Das BEC wurde dabei mithilfe der magnetischen Mikrofallenpotentiale deterministisch an eine Position innerhalb des Resonators gebracht und zur Gänze in einen wohldefinierten
Bauch einer zusätzlichen optischen Dipol-Stehwellenfalle im Resonator umgeladen. Das Spektrum des gekoppelten Atom-Resonator-Systems wurde für unterschiedliche Atomzahlen
und Atom-Resonator-Verstimmungen vermessen, wobei ein kollektives Vakuum-Rabi-Splitting von mehr als 20GHz erreicht werden konnte
Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip
An optical cavity enhances the interaction between atoms and light, and the
rate of coherent atom-photon coupling can be made larger than all decoherence
rates of the system. For single atoms, this strong coupling regime of cavity
quantum electrodynamics (cQED) has been the subject of spectacular experimental
advances, and great efforts have been made to control the coupling rate by
trapping and cooling the atom towards the motional ground state, which has been
achieved in one dimension so far. For N atoms, the three-dimensional ground
state of motion is routinely achieved in atomic Bose-Einstein condensates
(BECs), but although first experiments combining BECs and optical cavities have
been reported recently, coupling BECs to strong-coupling cavities has remained
an elusive goal. Here we report such an experiment, which is made possible by
combining a new type of fibre-based cavity with atom chip technology. This
allows single-atom cQED experiments with a simplified setup and realizes the
new situation of N atoms in a cavity each of which is identically and strongly
coupled to the cavity mode. Moreover, the BEC can be positioned
deterministically anywhere within the cavity and localized entirely within a
single antinode of the standing-wave cavity field. This gives rise to a
controlled, tunable coupling rate, as we confirm experimentally. We study the
heating rate caused by a cavity transmission measurement as a function of the
coupling rate and find no measurable heating for strongly coupled BECs. The
spectrum of the coupled atoms-cavity system, which we map out over a wide range
of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings
exceeding 20 gigahertz, as well as an unpredicted additional splitting which we
attribute to the atomic hyperfine structure.Comment: 20 pages. Revised version following referees' comments. Detailed
notes adde
Fiber Fabry-Perot cavity with high finesse
We have realized a fiber-based Fabry-Perot cavity with CO2 laser-machined
mirrors. It combines very small size, high finesse F>=130000, small waist and
mode volume, and good mode matching between the fiber and cavity modes. This
combination of features is a major advance for cavity quantum electrodynamics
(CQED), as shown in recent CQED experiments with Bose-Einstein condensates
enabled by this cavity [Y. Colombe et al., Nature 450, 272 (2007)]. It should
also be suitable for a wide range of other applications, including coupling to
solid-state emitters, gas detection at the single-particle level, fiber-coupled
single-photon sources and high-resolution optical filters with large stopband.Comment: Submitted to New J. Phys
Coherence in Microchip Traps
We report the coherent manipulation of internal states of neutral atoms in a
magnetic microchip trap. Coherence lifetimes exceeding 1 s are observed with
atoms at distances of m from the microchip surface. The coherence
lifetime in the chip trap is independent of atom-surface distance within our
measurement accuracy, and agrees well with the results of similar measurements
in macroscopic magnetic traps. Due to the absence of surface-induced
decoherence, a miniaturized atomic clock with a relative stability in the
range can be realized. For applications in quantum information
processing, we propose to use microwave near-fields in the proximity of chip
wires to create potentials that depend on the internal state of the atoms.Comment: Revised version, accepted for publication in Phys. Rev. Lett., 4
pages, 4 figure
Cavity-based single atom preparation and high-fidelity hyperfine state readout
We prepare and detect the hyperfine state of a single 87Rb atom coupled to a
fiber-based high finesse cavity on an atom chip. The atom is extracted from a
Bose-Einstein condensate and trapped at the maximum of the cavity field,
resulting in a reproducibly strong atom-cavity coupling. We use the cavity
reflection and transmission signal to infer the atomic hyperfine state with a
fidelity exceeding 99.92% in a read-out time of 100 microseconds. The atom is
still trapped after detection.Comment: 5 pages, 4 figure
Quantum Information Processing in Optical Lattices and Magnetic Microtraps
We review our experiments on quantum information processing with neutral atoms in optical lattices and magnetic microtraps. Atoms in an optical lattice in the Mott insulator regime serve as a large qubit register. A spin-dependent lattice is used to split and delocalize the atomic wave functions in a controlled and coherent way over a defined number of lattice sites. This is used to experimentally demonstrate a massively parallel quantum gate array, which allows the creation of a highly entangled many-body cluster state through coherent collisions between atoms on neighbouring lattice sites. In magnetic microtraps on an atom chip, we demonstrate coherent manipulation of atomic qubit states and measure coherence lifetimes exceeding one second at micron-distance from the chip surface. We show that microwave near-fields on the chip can be used to create state-dependent potentials for the implementation of a quantum controlled phase gate with these robust qubit states. For single atom detection and preparation, we have developed high finesse fiber Fabry-Perot cavities and integrated them on the atom chip. We present an experiment in which we detected a very small number of cold atoms magnetically trapped in the cavity using the atom chip