85 research outputs found
Volumes of Compact Manifolds
We present a systematic calculation of the volumes of compact manifolds which
appear in physics: spheres, projective spaces, group manifolds and generalized
flag manifolds. In each case we state what we believe is the most natural scale
or normalization of the manifold, that is, the generalization of the unit
radius condition for spheres. For this aim we first describe the manifold with
some parameters, set up a metric, which induces a volume element, and perform
the integration for the adequate range of the parameters; in most cases our
manifolds will be either spheres or (twisted) products of spheres, or quotients
of spheres (homogeneous spaces).
Our results should be useful in several physical instances, as instanton
calculations, propagators in curved spaces, sigma models, geometric scattering
in homogeneous manifolds, density matrices for entangled states, etc. Some flag
manifolds have also appeared recently as exceptional holonomy manifolds; the
volumes of compact Einstein manifolds appear in String theory.Comment: 26 pages, no figures; updated addresses and bibliography. To be
published in Rep. Math. Phy
Calculation of the unitary part of the Bures measure for N-level quantum systems
We use the canonical coset parameterization and provide a formula with the
unitary part of the Bures measure for non-degenerate systems in terms of the
product of even Euclidean balls. This formula is shown to be consistent with
the sampling of random states through the generation of random unitary
matrices
Quantum invariants and the graph isomorphism problem
© 2019 authors. Published by the American Physical Society. Three graph invariants are introduced which may be measured from a quantum graph state and form examples of a framework under which other graph invariants can be constructed. Each invariant is based on distinguishing a different number of qubits. This is done by applying different measurements to the qubits to be distinguished. The performance of these invariants is evaluated and compared to classical invariants. We verify that the invariants can distinguish all nonisomorphic graphs with nine or fewer nodes. The invariants have also been applied to "classically hard" strongly regular graphs, successfully distinguishing all strongly regular graphs of up to 29 nodes, and preliminarily to weighted graphs. We have found that, although it is possible to prepare states with a polynomial number of operations, the average number of preparations required to distinguish nonisomorphic graph states scales exponentially with the number of nodes. We have so far been unable to find operators which reliably compare graphs and reduce the required number of preparations to feasible levels
SU(N)-symmetric quasi-probability distribution functions
We present a set of N-dimensional functions, based on generalized
SU(N)-symmetric coherent states, that represent finite-dimensional Wigner
functions, Q-functions, and P-functions. We then show the fundamental
properties of these functions and discuss their usefulness for analyzing
N-dimensional pure and mixed quantum states.Comment: 16 pages, 2 figures. Updated text to reflect referee comment
Two-Qubit Separabilities as Piecewise Continuous Functions of Maximal Concurrence
The generic real (b=1) and complex (b=2) two-qubit states are 9-dimensional
and 15-dimensional in nature, respectively. The total volumes of the spaces
they occupy with respect to the Hilbert-Schmidt and Bures metrics are
obtainable as special cases of formulas of Zyczkowski and Sommers. We claim
that if one could determine certain metric-independent 3-dimensional
"eigenvalue-parameterized separability functions" (EPSFs), then these formulas
could be readily modified so as to yield the Hilbert-Schmidt and Bures volumes
occupied by only the separable two-qubit states (and hence associated
separability probabilities). Motivated by analogous earlier analyses of
"diagonal-entry-parameterized separability functions", we further explore the
possibility that such 3-dimensional EPSFs might, in turn, be expressible as
univariate functions of some special relevant variable--which we hypothesize to
be the maximal concurrence (0 < C <1) over spectral orbits. Extensive numerical
results we obtain are rather closely supportive of this hypothesis. Both the
real and complex estimated EPSFs exhibit clearly pronounced jumps of magnitude
roughly 50% at C=1/2, as well as a number of additional matching
discontinuities.Comment: 12 pages, 7 figures, new abstract, revised for J. Phys.
Generalized Euler Angle Paramterization for SU(N)
In a previous paper (math-ph/0202002) an Euler angle parameterization for
SU(4) was given. Here we present the derivation of a generalized Euler angle
parameterization for SU(N). The formula for the calculation of the Haar measure
for SU(N) as well as its relation to Marinov's volume formula for SU(N) will
also be derived. As an example of this parameterization's usefulness, the
density matrix parameterization and invariant volume element for a
qubit/qutrit, three qubit and two three-state systems, also known as two qutrit
systems, will also be given.Comment: 36 pages, no figures; added qubit/qutrit work, corrected minor
definition problems and clarified Haar measure derivation. To be published in
J. Phys. A: Math. and Ge
A priori probability that a qubit-qutrit pair is separable
We extend to arbitrarily coupled pairs of qubits (two-state quantum systems)
and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181),
which was concerned with the simplest instance of entangled quantum systems,
pairs of qubits. As in that analysis -- again on the basis of numerical
(quasi-Monte Carlo) integration results, but now in a still higher-dimensional
space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical
distinguishability) probability that arbitrarily paired qubits and qutrits are
separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where
u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive
primes). This is considerably less than the conjectured value of the Bures/SD
probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these
conjectures, in turn, rely upon ones to the effect that the SD volumes of
separable states assume certain remarkable forms, involving "primorial"
numbers. We also estimate the SD area of the boundary of separable qubit-qutrit
states, and provide preliminary calculations of the Bures/SD probability of
separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact
computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures
volume of mixed quantum states" to refine our conjecture
Hilbert--Schmidt volume of the set of mixed quantum states
We compute the volume of the convex N^2-1 dimensional set M_N of density
matrices of size N with respect to the Hilbert-Schmidt measure. The hyper--area
of the boundary of this set is also found and its ratio to the volume provides
an information about the complex structure of M_N. Similar investigations are
also performed for the smaller set of all real density matrices. As an
intermediate step we analyze volumes of the unitary and orthogonal groups and
of the flag manifolds.Comment: 13 revtex pages, ver 3: minor improvement
SU(N) Coherent States and Irreducible Schwinger Bosons
We exploit the SU(N) irreducible Schwinger boson to construct SU(N) coherent
states. This construction of SU(N) coherent state is analogous to the
construction of the simplest Heisenberg-Weyl coherent states. The coherent
states belonging to irreducible representations of SU(N) are labeled by the
eigenvalues of the SU(N) Casimir operators and are characterized by
complex orthonormal vectors describing the SU(N) group manifold.Comment: 12 pages, 3 figure
- …