39 research outputs found

    \u3cem\u3eBorrelia burgdorferi\u3c/em\u3e SpoVG DNA- and RNA-Binding Protein Modulates the Physiology of the Lyme Disease Spirochete

    Get PDF
    The SpoVG protein of Borrelia burgdorferi, the Lyme disease spirochete, binds to specific sites of DNA and RNA. The bacterium regulates transcription of spoVG during the natural tick-mammal infectious cycle and in response to some changes in culture conditions. Bacterial levels of spoVG mRNA and SpoVG protein did not necessarily correlate, suggesting that posttranscriptional mechanisms also control protein levels. Consistent with this, SpoVG binds to its own mRNA, adjacent to the ribosome-binding site. SpoVG also binds to two DNA sites in the glpFKD operon and to two RNA sites in glpFKD mRNA; that operon encodes genes necessary for glycerol catabolism and is important for colonization in ticks. In addition, spirochetes engineered to dysregulate spoVG exhibited physiological alterations

    The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi, the aetiological agent of Lyme disease, follows a life cycle that involves passage between the tick vector and the mammalian host. To investigate the role of the 36 kb linear plasmid, lp36 (also designated the B. burgdorferi K plasmid), in the infectious cycle of B. burgdorferi, we examined a clone lacking this plasmid, but containing all other plasmids known to be required for infectivity. Our results indicated that lp36 was not required for spirochete survival in the tick, but the clone lacking lp36 demonstrated low infectivity in the mammal. Restoration of lp36 to the mutant strain confirmed that the infectivity defect was due to loss of lp36. Moreover, spirochetes lacking lp36 exhibited a nearly 4-log increase in ID50 relative to the isogenic lp36+ clone. The infectivity defect of lp36-minus spirochetes was localized, in part, to loss of the bbk17 (adeC) gene, which encodes an adenine deaminase. This work establishes a vital role for lp36 in the infectious cycle of B. burgdorferi and identifies the bbk17 gene as a component of this plasmid that contributes to mammalian infectivity

    A Borrelia burgdorferi homolog of the Escherichia coli rho

    No full text

    Rapid Clearance of Lyme Disease Spirochetes Lacking OspC from Skin

    No full text
    We previously demonstrated that Borrelia burgdorferi requires OspC to colonize a mammalian host. To delineate this requirement, we analyzed the clearance of ospC mutant spirochetes and found that they were eliminated within 48 h. We conclude that B. burgdorferi uses OspC to resist innate host defenses immediately after transmission

    Plasmid Stability during In Vitro Propagation of Borrelia burgdorferi Assessed at a Clonal Level

    No full text
    Borrelia burgdorferi causes Lyme disease in humans. The genome of the sequenced type strain B31 MI consists of a linear chromosome, 12 linear plasmids, and 9 circular plasmids. Previous studies by other investigators indicated that some of these plasmids are essential for the survival of the spirochetes in vivo but not in vitro. We have studied plasmid stability during in vitro growth at 23 and 35°C, conditions that approximate the temperatures of the tick vector and the mammalian host, respectively. Starting with two clones that have all 21 plasmids, we investigated plasmid maintenance within the population and on a clonal level. After three passages (27 generations), the cultures were no longer homogeneous and some derivative clones had already lost multiple plasmids. Despite this, one of six clones analyzed after 25 passages (225 generations) retained all but one plasmid (cp9) and was able to complete the mouse-tick-mouse infectious cycle. We analyzed protein composition and regulation of gene expression of clones differing in plasmid content after serial passages. All clones tested exhibited temperature-regulated expression of several proteins, including OspC. In addition, analysis of cultures inoculated from frozen stocks suggests that freezing and/or thawing contributes to heterogeneity in the outgrowth population with respect to plasmid content. Our investigations show that in vitro propagation of a clone leads to a heterogeneous population but that virulent clones can persist through extended passage. We therefore conclude that isogenicity of clones must be confirmed irrespective of their in vitro passage history

    OspC-Independent Infection and Dissemination by Host-Adapted Borrelia burgdorferi▿

    No full text
    Borrelia burgdorferi OspC is required for the spirochete to establish infection in a mammal by tick transmission or needle inoculation. After a brief essential period, the protein no longer is required and the gene can be shut off. Using a system in which spirochetes contain only an unstable wild-type copy of the ospC gene, we can obtain mice persistently infected with bacteria lacking OspC. We implanted pieces of infected mouse skin subcutaneously in naïve mice, using donors carrying wild-type or ospC mutant spirochetes, and found that both could infect mice by this method, with similar numbers of wild-type or ospC mutant spirochetes disseminated throughout the tissues of recipient mice. Recipient mouse immune responses to tissue transfer-mediated infection with wild-type or ospC mutant spirochetes were similar. These experiments demonstrate that mammalian host-adapted spirochetes can infect and disseminate in mice in the absence of OspC, thereby circumventing this hallmark of tick-derived or in vitro-grown spirochetes. We propose a model in which OspC is one of a succession of functionally equivalent, essential proteins that are synthesized at different stages of mammalian infection. In this model, another protein uniquely present on host-adapted spirochetes performs the same essential function initially fulfilled by OspC. The strict temporal control of B. burgdorferi outer surface protein gene expression may reflect immunological constraints rather than distinct functions
    corecore