4,930 research outputs found
Learning from Kaupapa Māori: Issues and techniques for engagement
This article argues for recognition of the value and relevance of Indigenous knowledges about principles and practices of engagement to theory-building and praxis in public relations. Specifically, in this article, the Kaupapa Māori body of knowledge and practice that has developed around Indigenous/non-Indigenous engagement in Aotearoa is identified as a valid source of insight for the analogous situation of organisation-public engagement where power imbalance is inherent
Public relations communication through corporate websites: Towards an understanding of the role of interactivity.
The Formation of Star Clusters II: 3D Simulations of Magnetohydrodynamic Turbulence in Molecular Clouds
(Abridged) We present a series of decaying turbulence simulations that
represent a cluster-forming clump within a molecular cloud, investigating the
role of magnetic fields on the formation of potential star-forming cores. We
present an exhaustive analysis of numerical data from these simulations that
includes a compilation of all of the distributions of physical properties that
characterize bound cores - including their masses, radii, mean densities,
angular momenta, spins, magnetizations, and mass-to-flux ratios. We also
present line maps of our models that can be compared with observations. Our
simulations range between 5-30 Jeans masses of gas, and are representative of
molecular cloud clumps with masses between 100-1000 solar masses. The cores
have mass-to-flux ratios that are generally less than that of the original
cloud, and so a cloud that is initially highly supercritical can produce cores
that are slightly supercritical, similar to that seen by Zeeman measurements of
molecular cloud cores. Clouds that are initially only slightly supercritical
will instead collapse along the field lines into sheets, and the cores that
form as these sheets fragment have a different mass spectrum than what is
observed. The spin rates of these cores suggests that subsequent fragmentation
into multiple systems is likely. The sizes of the bound cores that are produced
are typically 0.02-0.2 pc and have densities in the range 10^4-10^5 cm^{-3} in
agreement with observational surveys. Finally, our numerical data allow us to
test theoretical models of the mass spectrum of cores, such as the turbulent
fragmentation picture of Padoan-Nordlund. We find that while this model gets
the shape of the core mass spectrum reasonably well, it fails to predict the
peak mass in the core mass spectrum.Comment: Accepted by MNRAS. 28 pages, 16 figures. Substantial revision since
last versio
Local contribution of a quantum condensate to the vacuum energy density
We evaluate the local contribution g_[mu nu]L of coherent matter with
lagrangian density L to the vacuum energy density. Focusing on the case of
superconductors obeying the Ginzburg-Landau equation, we express the
relativistic invariant density L in terms of low-energy quantities containing
the pairs density. We discuss under which physical conditions the sign of the
local contribution of the collective wave function to the vacuum energy density
is positive or negative. Effects of this kind can play an important role in
bringing about local changes in the amplitude of gravitational vacuum
fluctuations - a phenomenon reminiscent of the Casimir effect in QED.Comment: LaTeX, 8 pages. Final journal versio
Teaching self-awareness, diversity and reflection to support an integrated engineering curriculum augmented with problem and scenario-based learning
Gravitational waves in preheating
We study the evolution of gravitational waves through the preheating era that
follows inflation. The oscillating inflaton drives parametric resonant growth
of scalar field fluctuations, and although super-Hubble tensor modes are not
strongly amplified, they do carry an imprint of preheating. This is clearly
seen in the Weyl tensor, which provides a covariant description of
gravitational waves.Comment: 8 pages, 8 figures, Revte
Negotiating a third space for participatory research with people with learning disabilities: An examination of boundaries and spatial practices
ArticleOpen Access Article. Published online: 08 Oct 2015.The focus of this article is participatory research with and by people with learning disabilities. Drawing on discussions that took place across a series of seminars, we use the concepts of space and boundaries to examine the development of a shared new spatial practice through creative responses to a number of challenges. We examine the boundaries that exist between participatory and non-participatory research; the boundaries that exist between different stakeholders of participatory research; and the boundaries that exist between participatory research with people with learning disabilities and participatory research with other groups. With a particular focus on participatory data analysis and participatory research with people with high support needs, we identify a number of ways in boundaries are being crossed. We argue that the pushing of new boundaries opens up both new and messy spaces and that both are important for the development of participatory research methods.Economic and Social Research Council (ESRC
(Giant) Vortex - (anti) vortex interaction in bulk superconductors: The Ginzburg-Landau theory
The vortex-vortex interaction potential in bulk superconductors is calculated
within the Ginzburg-Landau (GL) theory and is obtained from a numerical
solution of a set of two coupled non-linear GL differential equations for the
vector potential and the superconducting order parameter, where the merger of
vortices into a giant vortex is allowed. Further, the interaction potentials
between a vortex and a giant vortex and between a vortex and an antivortex are
obtained for both type-I and type-II superconductors. Our numerical results
agree asymptotically with the analytical expressions for large inter-vortex
separations which are available in the literature. We propose new empirical
expressions valid over the full interaction range, which are fitted to our
numerical data for different values of the GL parameter
Evolution of an elliptical bubble in an accelerating extensional flow
Mathematical models that describe the dynamical behavior of a thin gas bubble embedded in a glass fiber during a fiber drawing process have been discussed and analyzed.
The starting point for the mathematical modeling was the equations presented in [1] for a glass fiber with a hole undergoing extensional flow. These equations were reconsidered here with the additional reduction that the hole, i.e. the gas bubble, was thin as compared to the radius of the fiber and of finite extent. The primary model considered was one in which the mass of the gas inside the bubble was fixed. This fixed-mass model involved equations for the axial velocity and fiber radius, and equations for the radius of the bubble and the gas pressure inside the bubble. The model equations assumed that the temperature of the furnace of the drawing tower was known.
The governing equations of the bubble are hyperbolic and predict that the bubble cannot extend beyond the limiting characteristics specified by the ends of the initial bubble shape. An analysis of pinch-off was performed, and it was found that pinch-off can occur, depending on the parameters of the model, due to surface tension when the bubble radius is small.
In order to determine the evolution of a bubble, a numerical method of solution was presented. The method was used to study the evolution of two different initial bubble shapes, one convex and the other non-convex. Both initial bubble shapes had fore-aft symmetry, and it was found that the bubbles stretched and elongated severely during the drawing process. For the convex shape, fore-aft symmetry was lost in the middle of the drawing process, but the symmetry was re-gained by the end of the drawing tower. A small amount of pinch-off was observed at each end for this case, so that the final bubble length was slightly shorter than its theoretical maximum length. For the non-convex initial shape, pinch-off occurred in the middle of the bubble resulting in two bubbles by the end of the fiber draw.
The two bubbles had different final pressures and did not have fore-aft symmetry.
An extension of the fixed-mass model was considered in which the gas in the bubble was allowed to diffuse into the surrounding glass. The governing equations for this leaky-mass model were developed and manipulated into a form suitable for a numerical treatment
- …
