5 research outputs found

    Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion

    Get PDF
    Trost E, Götker S, Schneider J, et al. Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1) isolated from a vaginal swab of a woman with spontaneous abortion. BMC Genomics. 2010;11(1): 91.Background Corynebacterium aurimucosum is a slightly yellowish, non-lipophilic, facultative anaerobic member of the genus Corynebacterium and predominantly isolated from human clinical specimens. Unusual black-pigmented variants of C. aurimucosum (originally named as C. nigricans) continue to be recovered from the female urogenital tract and they are associated with complications during pregnancy. C. aurimucosum ATCC 700975 (C. nigricans CN-1) was originally isolated from a vaginal swab of a 34-year-old woman who experienced a spontaneous abortion during month six of pregnancy. For a better understanding of the physiology and lifestyle of this potential urogenital pathogen, the complete genome sequence of C. aurimucosum ATCC 700975 was determined. Results Sequencing and assembly of the C. aurimucosum ATCC 700975 genome yielded a circular chromosome of 2,790,189 bp in size and the 29,037-bp plasmid pET44827. Specific gene sets associated with the central metabolism of C. aurimucosum apparently provide enhanced metabolic flexibility and adaptability in aerobic, anaerobic and low-pH environments, including gene clusters for the uptake and degradation of aromatic amines, L-histidine and L-tartrate as well as a gene region for the formation of selenocysteine and its incorporation into formate dehydrogenase. Plasmid pET44827 codes for a non-ribosomal peptide synthetase that plays the pivotal role in the synthesis of the characteristic black pigment of C. aurimucosum ATCC 700975. Conclusions The data obtained by the genome project suggest that C. aurimucosum could be both a resident of the human gut and possibly a pathogen in the female genital tract causing complications during pregnancy. Since hitherto all black-pigmented C. aurimucosum strains have been recovered from female genital source, biosynthesis of the pigment is apparently required for colonization by protecting the bacterial cells against the high hydrogen peroxide concentration in the vaginal environment. The location of the corresponding genes on plasmid pET44827 explains why black-pigmented (formerly C. nigricans) and non-pigmented C. aurimucosum strains were isolated from clinical specimens

    Evaluation of commercially available DNA extraction kits for the analysis of the broiler chicken cecal microbiota.

    No full text
    Pankoke H, Maus I, Loh G, et al. Evaluation of commercially available DNA extraction kits for the analysis of the broiler chicken cecal microbiota. FEMS microbiology letters. 2019.16S amplicon sequencing is a state of the art technology to analyze bacterial communities via microbiome profiling. Choosing an appropriate DNA extraction protocol is crucial for characterizing the microbial community and can be challenging, especially when preliminary knowledge about the sample matrix is scarce. The aim of the present study was to evaluate seven commercial DNA extraction kits suitable for 16S rRNA gene amplicon sequencing of the bacterial community of the chicken cecum, taking into account different criteria such as high technical reproducibility, high bacterial diversity and easy handling. The DNA extraction kits differed strongly with respect to extractable DNA quantity, DNA quality, technical reproducibility and bacterial diversity determined after 16S rRNA gene amplicon sequencing and subsequent bioinformatic and biostatistical data processing. While some of the DNA extraction protocols under-represented specific bacterial community members, the removal of PCR inhibitors supported technical reproducibility and subsequently enhanced the recovered bacterial diversity from the chicken cecum community. In conclusion, the removal of PCR inhibitors from the sample matrix seemed to be one of the main drivers for a consistent representation of the bacterial community even of low abundant taxa in chicken cecum samples. © FEMS 2019

    Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids

    No full text
    Tauch A, Schneider J, Szczepanowski R, et al. Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids. Journal of Biotechnology. 2008;136(1-2):22-30.Corynebacterium kroppenstedtii is a lipophilic corynebacterial species that lacks in the cell envelope the characteristic alpha-alkyl-beta-hyclroxy long-chain fatty acids, designated mycolic acids. We report here the bioinformatic analysis of genome data obtained by pyrosequencing of the type strain C kroppenstedtii DSM44385 that was initially isolated from human Sputum. A single run with the Genome Sequencer FLX system revealed 560,248 Shotgun reads with 110,018,974 detected bases that were assembled into a contiguous genomic sequence with a total size of 2,446,804 bp. Automatic annotation of the complete genome sequence resulted in the prediction of 2122 coding sequences, of which 29% were considered as specific for C. kroppenstedtii when compared with predicted proteins from hitherto sequenced pathogenic corynebacteria. This Comparative content analysis of the genome data revealed a large repertoire of genes involved in sugar Uptake and central carbohydrate metabolism and the presence of the mevalonate route for isoprenoid biosynthesis. The lack of mycolic acids and the lipophilic lifestyle of C. kroppenstedtii are apparently caused by gene loss, including a condensase gene cluster, a mycolate reductase gene, and a microbial type I fatty acid synthase gene. A complete beta-oxidation pathway involved in the degradation of fatty acids is present in the genome. Evaluation of the genomic data indicated that lipophilism is the dominant feature involved in pathogenicity of C. kroppenstedtii. (C) 2008 Elsevier B.V. All rights reserved

    The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology

    No full text
    SchlĂĽter A, Bekel T, Diaz NN, et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. Journal of Biotechnology. 2008;136(1-2):77-90.Composition and gene content of a biogas-producing microbial community from a production-scale biogas plant fed with renewable primary products was analysed by means of a metagenomic approach applying the ultrafast 454-pyrosequencing technology. Sequencing of isolated total community DNA on a Genome Sequencer FLX System resulted in 616,072 reads with an average read length of 230 bases accounting for 141,664,289 bases sequence information. Assignment of obtained single reads to COG (Clusters of Orthologous Groups of proteins) categories revealed a genetic profile characteristic for an anaerobic microbial consortium conducting fermentative metabolic pathways. Assembly of single reads resulted in the formation of 8752 contigs larger than 500 bases in size. Contigs longer than 10kb mainly encode house-keeping proteins, e.g. DNA polymerase, recombinase, DNA ligase, sigma factor RpoD and genes involved in sugar and amino acid metabolism. A significant portion of contigs was allocated to the genome sequence of the archaeal methanogen Methanoculleus marisnigri JR1. Mapping of single reads to the M. marisnigri JR1 genome revealed that approximately 64% of the reference genome including methanogenesis gene regions are deeply covered. These results suggest that species related to those of the genus Methanoculleus play a dominant role in methanogenesis in the analysed fermentation sample. Moreover, assignment of numerous contig sequences to clostridial genomes including gene regions for cellulolytic functions indicates that clostridia are important for hydrolysis of cellulosic plant biomass in the biogas fermenter under study. Metagenome sequence data from a biogas-producing microbial community residing in a fermenter of a biogas plant provide the basis for a rational approach to improve the biotechnological process of biogas production
    corecore