6 research outputs found

    Relative commutants of strongly self-absorbing C*-algebras

    Get PDF
    The relative commutant AAUA'\cap A^{\mathcal{U}} of a strongly self-absorbing algebra AA is indistinguishable from its ultrapower AUA^{\mathcal{U}}. This applies both to the case when AA is the hyperfinite II1_1 factor and to the case when it is a strongly self-absorbing C*-algebra. In the latter case we prove analogous results for (A)/c0(A)\ell_\infty(A)/c_0(A) and reduced powers corresponding to other filters on N\bf N. Examples of algebras with approximately inner flip and approximately inner half-flip are provided, showing the optimality of our results. We also prove that strongly self-absorbing algebras are smoothly classifiable, unlike the algebras with approximately inner half-flip.Comment: Some minor correction

    Classifying maps into uniform tracial sequence algebras

    Full text link
    We classify ∗-homomorphisms from nuclear C∗-algebras into uniform tracial sequence algebras of nuclear Z-stable C∗-algebras via tracial data
    corecore