13 research outputs found

    A method for detecting non-stationary oscillations in process plants

    Get PDF
    This paper proposes a method for detecting oscillations in non-stationary timeseries based on the statistical properties of zero-crossings. The main development presented is atechnique to remove non-stationary trend component from the analysed signals before applyingan oscillation detection procedure. First, the method extracts the signal's baseline that is utilizedto stationarize the signal. Then, an index describing the regularity of the stationarized signal'szero-crossings is computed in order to determine the presence of oscillation. The propertiesand performance of the method are analysed in simulation studies. Furthermore, the methodis comprehensively tested with industrial data in a comparative study in which the proposedmethod is tested against other oscillation detection methods using industrial benchmark dataand in tests on paperboard machine process. Finally, the simulation and industrial results areanalysed and discussed.Peer reviewe

    Outline of a fault diagnosis system for a large-scale board machine

    Get PDF
    Global competition forces process industries to continuously optimize plant operation. One of the latest trends for efficiency and plant availability improvement is to set up fault diagnosis and maintenance systems for online industrial use. This paper presents a methodology for developing industrial fault detection and diagnosis (FDD) systems. Since model or data-based diagnosis of all components cannot be achieved online on a large-scale basis, the focus must be narrowed down to the most likely faulty components responsible for abnormal process behavior. One of the key elements here is fault analysis. The paper describes and briefly discusses also other development phases, process decomposition, and the selection of FDD methods. The paper ends with an FDD case study of a large-scale industrial board machine including a description of the fault analysis and FDD algorithms for the resulting focus areas. Finally, the testing and validation results are presented and discussed.Peer reviewe

    Kartonkikoneen vikadiagnostiikka käyttäen kausaalikuvaaja menetelmää

    No full text
    Vikadiagnostiikkajärjestelmiä, jotka havaitsevat ja paikantavat vikoja sekä poikkeamien aiheuttajia, tarvitaan teollisuudessa. Samaan aikaan, kun laatu-, tehokkuus-, ympäristö-, ja turvallisuusvaatimukset kasvavat, on kilpailu ja prosessien monimutkaisuus lisääntynyt. Tarjoamalla lisää tietoa prosessin tilasta operaattoreille, vikadiagnostiikkajärjestelmä auttaa pitämään prosessin käynnissä ja tehostamaan tuotantoa. Tutkimus vikadiagnostiikan alalla on ollut aktiivista jo kolmen vuosikymmenen ajan. Lukuisia menetelmiä, joilla vikatilanteita voidaan käsitellä, on kehitetty. Yksi niistä on kausaalikuvaajamenetelmä, joka on herättänyt merkittävää mielenkiintoa. Siinä prosessi kuvataan syy-seurausmallien avulla ja vian alkuperän paikannukseen käytetään erityistä päättelymekanismia. Menetelmän heikkoutena on kuitenkin kausaalisten prosessimallien luominen. Tämän työn kirjallisuusosassa tehdään katsaus kausaalikuvaajamenetelmistä, joita on käytetty prosessien vikadiagnostiikkaan. Myös kausaalimallien rakentamista käsitellään. Kirjallisuusosan lopussa esitellään menetelmän sovelluskohteita, etenkin sellu- ja paperiteollisuuden alalta. Työn kokeellinen osa käsittelee kausaalimallin rakentamista dynaamisten simulointien avulla. Menettelytapa mallien luomiseen esitetään ja testataan tapaustutkimuksen avulla. Kartonkikoneen massankäsittelyn kausaalimalli rakennetaan käyttäen ehdotettua menettelytapaa, ja mallia testataan kolmen simuloidun vikatilanteen avulla. Tässä työssä osoitetaan, että käyttäen esiteltyä menettelytapaa, voidaan onnistuneesti rakentaa prosessin kausaalimalli, joka kuvaa prosessin käyttäytymistä riittävällä tarkkuudella. Mallia testattiin ja arvioitiin käyttäen simulointeja sekä prosessidataa teolliselta kartonkikoneelta. Vikadiagnostiikkatestissä mallin avulla voitiin havaita kaikki kolme simuloitua sakeusmittarin vikatilannetta. Niistä kaksi onnistuttiin myös paikantamaan ja luokittelemaan oikein

    Integroitu vianhavaintajärjestelmä kartonkikoneelle

    No full text
    The current process industry faces remarkable challenges due to global competition, tightening environmental regulations, and the increasing complexity and integration of process plants. Especially, the pulp and paper industry has been under pressure in recent years to improve the efficiency of operations and to optimize production. Managing abnormal events, such as disturbances, faults and failures is an essential part of improving the operation of process plants. Traditional plant automation systems are able to handle the typical faults and disturbances and to restore the process into a normal state. However, in order to address more complex faults, the automation systems must be accompanied by fault detection methods which provide the plant operators and maintenance with additional information about the faults. This thesis presents the development of an integrated fault detection system for a board machine. The system was developed according to a created methodology which exploited the decomposition and control strategy of the process as well as fault analysis. The presented fault detection system consisted of four fault detection algorithms that addressed the faults having the most significant effect on the economic performance and operability of the process. The fault detection system comprised of a valve stiction detection system employing a parallel configuration of four different stiction detection algorithms, a robust detection method for non-stationary oscillations, a dynamic causal digraph -based method for detecting consistency sensor faults, a detection method for leakages and blockages in the drying section using non-linear parity equations, and a self-organising map -based process monitoring method for detecting caliper sensor fouling. The individual fault detection algorithms were tested and validated in case studies using simulations and industrial data. In addition, industrial experiments were carried out at the board machine. The obtained results were very promising and showed that the presented methodology provided a systematic approach to the development of a fault detection system. The testing results indicated that the fault detection algorithms provide useful information for improving the operation and maintenance of the board machine.Globaali kilpailu, kiristyvät ympäristövaatimukset sekä entistä monimutkaisemmat ja suljetummat prosessit asettavat merkittäviä haasteita nykypäivän prosessiteollisuudelle. Erityisesti paperi- ja selluteollisuus on ollut murroksessa viime vuosina, mikä vaatii toiminnan tehostamista ja tuotannon optimoimista. Olennainen tapa parantaa prosessien toimintaa on poikkeavien prosessiolosuhteiden ja vikojen hallinta. Normaalit prosessiautomaatiojärjestelmät pystyvät selvittämään tavallisimmat viat ja häiriöt sekä palauttamaan prosessin normaaliin tilaan. Kuitenkin kriittisimpien vikatilanteiden tapauksessa täytyy automaatiojärjestelmän rinnalle kehittää vianhavaintamenetelmiä, jotka tuottavat tietoa prosessin vioista operaattoreille ja kunnossapidolle. Tässä työssä on kehitetty integroitu vianhavaintajärjestelmä kartonkikoneelle. Järjestelmän kehittämistä varten on luotu metodologia, jossa hyödynnetään prosessin rakenteen ja säätöjärjestelmän tuntemusta sekä vika-analyysiä. Vianhavaintajärjestelmä koostui useista eri algoritmeista, jotka olivat kehitetty havaitsemaan vikoja, joilla on merkittävin vaikutus prosessin taloudellisuuteen ja toimintaan. Järjestelmä kattoi venttiilien jumiutumisen havainnointijärjestelmän, epästationaarisille signaaleille soveltuvan oskillointien havainnointimenetelmän, dynaamisiin digraafeihin perustuvan menetelmän sakeusmittausten vikojen tunnistamiseen, menetelmän vuotojen ja tukosten havaitsemiseksi kuivatusosassa sekä itseohjautuviin karttoihin perustuvan paksuussensorin likaantumisen monitoroinnin. Yksittäiset vianhavaintamenetelmät testattiin ja validoitiin tapaustutkimuksissa käyttäen apuna simulointeja ja teollista mittausdataa. Lisäksi kartonkikoneella suoritettiin koeajoja. Testitulokset olivat erittäin lupaavia ja todistivat että esitetty metodologia tarjoaa systemaattisen lähestymistavan vianhavaintajärjestelmän kehittämiseen. Vianhavaintamenetelmien testeistä saadut tulokset puolestaan osoittivat että menetelmät tuottavat hyödyllistä tietoa prosessin toiminnan ja kunnossapidon parantamiseksi

    Monitoring of Caliper Sensor Fouling in a Board Machine Using Self-Organizing Maps

    No full text
    This paper presentes a process-monitoring scheme utilising adaptive self-organising maps (SOM) to detect process conditions that lead to the fouling of a caliper sensor in a board machine. The scheme is based on mapping on a SOM the process measurements and the calculated variables which provide insight into the chemical phenomena involved in fouling to classify faulty process conditions. The time-variant nature of the board making process was taken into account by regularly re-training the SOM. The monitoring scheme is demonstrated with industrial data, and the results are presented and discussed.Peer reviewe

    A method for detecting non-stationary oscillations in process plants

    No full text
    This paper proposes a method for detecting oscillations in non-stationary time series based on the statistical properties of zero-crossings. The main development presented is a technique to remove non-stationary trend component from the analysed signals before applying an oscillation detection procedure. First, the method extracts the signal's baseline that is utilized to stationarize the signal. Then, an index describing the regularity of the stationarized signal's zero-crossings is computed in order to determine the presence of oscillation. The properties and performance of the method are analysed in simulation studies. Furthermore, the method is comprehensively tested with industrial data in a comparative study in which the proposed method is tested against other oscillation detection methods using industrial benchmark data and in tests on paperboard machine process . Finally, the simulation and industrial results are analysed and discussed.Peer reviewe

    Detection and Isolation of Oscillations Using the Dynamic Causal Digraph Method

    No full text
    This paper proposes a modification to the dynamic causal digraph (DCDG) method in order to address the detection and isolation of oscillations in a process. The proposed detection method takes advantage of the properties of residual signals generated by the DCDG method by studying their zerocrossings. The method is tested in an application to a board making process and the results are presented and discussed.Peer reviewe

    A fault detection and diagnosis approach based on nonlinear parity equations and its application to leakages and blockages in the drying section of a board machine

    No full text
    This study aims at providing a fault detection and diagnosis (FDD) approach based on nonlinear parity equations identified from process data. Process knowledge is used to reduce the process nonlinearity from high to low-dimensional nonlinear functions representing common process devices, such as valves, and incorporating the monotonousness properties of the dependencies between the variables. The fault detection approach considers the obtained process model to be nonlinear parity equations, and fault diagnosis is carried out with the standard structured residual method. The applicability of the approach to complex flow networks controlled by valves is tested on the drying section of an industrial board machine, in which the key problems are leakages and blockages of valves and pipes in the steam-water network. Nonlinear model equations based on the mass balance of different parts of the network are identified and validated. Finally, fault detection and diagnosis algorithms are successfully implemented, tested, and reported.Peer reviewe

    Integrated FDD system for valve stiction in a paperboard machine

    No full text
    The performance of a modern industrial plant can be severely affected by the performance of its key devices, such as valves. In particular, valve stiction can cause poor performance in control loops and can consequently lower the efficiency of the plant and the quality of the product. This paper presents an integrated FDD system for valve stiction which employs various FDD methods in a parallel configuration. A reliability index was integrated into each method in order to estimate their degree of influence in the final diagnosis of the system. Each method and the integrated system were tested using industrial data.Peer reviewe
    corecore