9 research outputs found
The use of omics technologies in creating LBP and postbiotics based on the Limosilactobacillus fermentum U-21
In recent years, there has been an increasing tendency to create drugs based on certain commensal bacteria of the human microbiota and their ingredients, primarily focusing on live biotherapeutics (LBPs) and postbiotics. The creation of such drugs, termed pharmacobiotics, necessitates an understanding of their mechanisms of action and the identification of pharmacologically active ingredients that determine their target properties. Typically, these are complexes of biologically active substances synthesized by specific strains, promoted as LBPs or postbiotics (including vesicles): proteins, enzymes, low molecular weight metabolites, small RNAs, etc. This study employs omics technologies, including genomics, proteomics, and metabolomics, to explore the potential of Limosilactobacillus fermentum U-21 for innovative LBP and postbiotic formulations targeting neuroinflammatory processes. Proteomic techniques identified and quantified proteins expressed by L. fermentum U-21, highlighting their functional attributes and potential applications. Key identified proteins include ATP-dependent Clp protease (ClpL), chaperone protein DnaK, protein GrpE, thioredoxin reductase, LysM peptidoglycan-binding domain-containing protein, and NlpC/P60 domain-containing protein, which have roles in disaggregase, antioxidant, and immunomodulatory activities. Metabolomic analysis provided insights into small-molecule metabolites produced during fermentation, revealing compounds with anti-neuroinflammatory activity. Significant metabolites produced by L. fermentum U-21 include GABA (γ-aminobutyric acid), niacin, aucubin, and scyllo-inositol. GABA was found to stabilize neuronal activity, potentially counteracting neurodegenerative processes. Niacin, essential for optimal nervous system function, was detected in vesicles and culture fluid, and it modulates cytokine production, maintaining immune homeostasis. Aucubin, an iridoid glycoside usually secreted by plants, was identified as having antioxidant properties, addressing issues of bioavailability for therapeutic use. Scyllo-inositol, identified in vesicles, acts as a chemical chaperone, reducing abnormal protein clumps linked to neurodegenerative diseases. These findings demonstrate the capability of L. fermentum U-21 to produce bioactive substances that could be harnessed in the development of pharmacobiotics for neurodegenerative diseases, contributing to their immunomodulatory, anti-neuroinflammatory, and neuromodulatory activities. Data of the HPLC-MS/MS analysis are available via ProteomeXchange with identifier PXD050857
BacHBerry: BACterial Hosts for production of Bioactive phenolics from bERRY fruits
BACterial Hosts for production of Bioactive phenolics from bERRY fruits (BacHBerry) was a 3-year project funded by the Seventh Framework Programme (FP7) of the European Union that ran between November 2013 and October 2016. The overall aim of the project was to establish a sustainable and economically-feasible strategy for the production of novel high-value phenolic compounds isolated from berry fruits using bacterial platforms. The project aimed at covering all stages of the discovery and pre-commercialization process, including berry collection, screening and characterization of their bioactive components, identification and functional characterization of the corresponding biosynthetic pathways, and construction of Gram-positive bacterial cell factories producing phenolic compounds. Further activities included optimization of polyphenol extraction methods from bacterial cultures, scale-up of production by fermentation up to pilot scale, as well as societal and economic analyses of the processes. This review article summarizes some of the key findings obtained throughout the duration of the project
Probing the Role of a Conserved Phenylalanine in the Active Site of Thiocyanate Dehydrogenase
Copper-containing enzymes catalyze a broad spectrum of redox reactions. Thiocyanate dehydrogenase (TcDH) from Thioalkalivibrio paradoxus Arh1 enables the bacterium to use thiocyanate as a unique source of energy and nitrogen. Oxidation of thiocyanate takes place in the trinuclear copper center of TcDH with peculiar organization. Despite the TcDH crystal structure being established, a role of some residues in the enzyme active site has yet to be obscured. F436 residue is located in the enzyme active site and conserved among a number of TcDH homologs, however, its role in the copper center formation or the catalytic process is still not clear. To address this question, a mutant form of the enzyme with F436Q substitution (TcDHF436Q) was obtained, biochemically characterized, and its crystal structure was determined. The TcDHF436Q had an unaltered protein fold but did not possess enzymatic activity, whereas it contained all three copper ions, according to ICP-MS data. The structural data showed that the F436Q substitution resulted in a disturbance of hydrophobic interactions within the active site crucial for a correct transition between open/closed forms of the enzyme–substrate channel. Thus, we demonstrated that F436 does not participate in copper ion binding, but rather possesses a structural role in the TcDH active site
Probing the Role of a Conserved Phenylalanine in the Active Site of Thiocyanate Dehydrogenase
Copper-containing enzymes catalyze a broad spectrum of redox reactions. Thiocyanate dehydrogenase (TcDH) from Thioalkalivibrio paradoxus Arh1 enables the bacterium to use thiocyanate as a unique source of energy and nitrogen. Oxidation of thiocyanate takes place in the trinuclear copper center of TcDH with peculiar organization. Despite the TcDH crystal structure being established, a role of some residues in the enzyme active site has yet to be obscured. F436 residue is located in the enzyme active site and conserved among a number of TcDH homologs, however, its role in the copper center formation or the catalytic process is still not clear. To address this question, a mutant form of the enzyme with F436Q substitution (TcDHF436Q) was obtained, biochemically characterized, and its crystal structure was determined. The TcDHF436Q had an unaltered protein fold but did not possess enzymatic activity, whereas it contained all three copper ions, according to ICP-MS data. The structural data showed that the F436Q substitution resulted in a disturbance of hydrophobic interactions within the active site crucial for a correct transition between open/closed forms of the enzyme–substrate channel. Thus, we demonstrated that F436 does not participate in copper ion binding, but rather possesses a structural role in the TcDH active site
Unusual Cytochrome c552 from Thioalkalivibrio paradoxus: Solution NMR Structure and Interaction with Thiocyanate Dehydrogenase
The search of a putative physiological electron acceptor for thiocyanate dehydrogenase (TcDH) newly discovered in the thiocyanate-oxidizing bacteria Thioalkalivibrio paradoxus revealed an unusually large, single-heme cytochrome c (CytC552), which was co-purified with TcDH from the periplasm. Recombinant CytC552, produced in Escherichia coli as a mature protein without a signal peptide, has spectral properties similar to the endogenous protein and serves as an in vitro electron acceptor in the TcDH-catalyzed reaction. The CytC552 structure determined by NMR spectroscopy reveals significant differences compared to those of the typical class I bacterial cytochromes c: a high solvent accessible surface area for the heme group and so-called “intrinsically disordered” nature of the histidine-rich N- and C-terminal regions. Comparison of the signal splitting in the heteronuclear NMR spectra of oxidized, reduced, and TcDH-bound CytC552 reveals the heme axial methionine fluxionality. The TcDH binding site on the CytC552 surface was mapped using NMR chemical shift perturbations. Putative TcDH-CytC552 complexes were reconstructed by the information-driven docking approach and used for the analysis of effective electron transfer pathways. The best pathway includes the electron hopping through His528 and Tyr164 of TcDH, and His83 of CytC552 to the heme group in accordance with pH-dependence of TcDH activity with CytC552
Unusual Cytochrome c552 from Thioalkalivibrio paradoxus: Solution NMR Structure and Interaction with Thiocyanate Dehydrogenase
The search of a putative physiological electron acceptor for thiocyanate dehydrogenase (TcDH) newly discovered in the thiocyanate-oxidizing bacteria Thioalkalivibrio paradoxus revealed an unusually large, single-heme cytochrome c (CytC552), which was co-purified with TcDH from the periplasm. Recombinant CytC552, produced in Escherichia coli as a mature protein without a signal peptide, has spectral properties similar to the endogenous protein and serves as an in vitro electron acceptor in the TcDH-catalyzed reaction. The CytC552 structure determined by NMR spectroscopy reveals significant differences compared to those of the typical class I bacterial cytochromes c: a high solvent accessible surface area for the heme group and so-called “intrinsically disordered” nature of the histidine-rich N- and C-terminal regions. Comparison of the signal splitting in the heteronuclear NMR spectra of oxidized, reduced, and TcDH-bound CytC552 reveals the heme axial methionine fluxionality. The TcDH binding site on the CytC552 surface was mapped using NMR chemical shift perturbations. Putative TcDH-CytC552 complexes were reconstructed by the information-driven docking approach and used for the analysis of effective electron transfer pathways. The best pathway includes the electron hopping through His528 and Tyr164 of TcDH, and His83 of CytC552 to the heme group in accordance with pH-dependence of TcDH activity with CytC552