27 research outputs found

    Bioenergetics of the Dictyostelium Kinesin-8 Motor Isoform

    No full text
    The functional organization of microtubules in eukaryotic cells requires a combination of their inherent dynamic properties, interactions with motor machineries, and interactions with accessory proteins to affect growth, shrinkage, stability, and architecture. In most organisms, the Kinesin-8 family of motors play an integral role in these organizations, well known for their mitotic activities in microtubule (MT) length control and kinetochore interactions. In Dictyostelium discoideum, the function of Kinesin-8 remains elusive. We present here some biochemical properties and localization data that indicate that this motor (DdKif10) shares some motility properties with other Kinesin-8s but also illustrates differences in microtubule localization and depolymerase action that highlight functional diversity

    Dance of the chromosomes

    No full text
    Mitosis in PtK1 (Potorus tridactylis kidney) cell. The movie captures the entire course of mitosis from prophase through the formation of two daughter cellsComponente Curricular::Educação Superior::Ciências Biológicas::Biologia Gera

    Dance of the chromosomes

    No full text
    Mitosis in PtK1 (Potorus tridactylis kidney) cell. The movie captures the entire course of mitosis from prophase through the formation of two daughter cellsComponente Curricular::Educação Superior::Ciências Biológicas::Biologia Gera

    Centrosome Positioning in Dictyostelium: Moving beyond Microtubule Tip Dynamics

    No full text
    The variability in centrosome size, shape, and activity among different organisms provides an opportunity to understand both conserved and specialized actions of this intriguing organelle. Centrosomes in the model organism Dictyostelium sp. share some features with fungal systems and some with vertebrate cell lines and thus provide a particularly useful context to study their dynamics. We discuss two aspects, centrosome positioning in cells and their interactions with nuclei during division as a means to highlight evolutionary modifications to machinery that provide the most basic of cellular services

    Disruption of Four Kinesin Genes in <it>Dictyostelium</it>

    No full text
    Abstract Background Kinesin and dynein are the two families of microtubule-based motors that drive much of the intracellular movements in eukaryotic cells. Using a gene knockout strategy, we address here the individual function(s) of four of the 13 kinesin proteins in Dictyostelium. The goal of our ongoing project is to establish a minimal motility proteome for this basal eukaryote, enabling us to contrast motor functions here with the often far more elaborate motor families in the metazoans. Results We performed individual disruptions of the kinesin genes, kif4, kif8, kif10, and kif11. None of the motors encoded by these genes are essential for development or viability of Dictyostelium. Removal of Kif4 (kinesin-7; CENP-E family) significantly impairs the rate of cell growth and, when combined with a previously characterized dynein inhibition, results in dramatic defects in mitotic spindle assembly. Kif8 (kinesin-4; chromokinesin family) and Kif10 (kinesin-8; Kip3 family) appear to cooperate with dynein to organize the interphase radial microtubule array. Conclusion The results reported here extend the number of kinesin gene disruptions in Dictyostelium, to now total 10, among the 13 isoforms. None of these motors, individually, are required for short-term viability. In contrast, homologs of at least six of the 10 kinesins are considered essential in humans. Our work underscores the functional redundancy of motor isoforms in basal organisms while highlighting motor specificity in more complex metazoans. Since motor disruption in Dictyostelium can readily be combined with other motility insults and stresses, this organism offers an excellent system to investigate functional interactions among the kinesin motor family.</p

    Rules of engagement: centrosome–nuclear connections in a closed mitotic system

    Get PDF
    Summary The assembly of a functional mitotic spindle is essential for cell reproduction and requires a precise coordination between the nuclear cycle and the centrosome. This coordination is particularly prominent in organisms that undergo closed mitosis where centrosomes must not only respond to temporal signals, but also to spatial considerations, e.g. switching from the production of cytoplasmic microtubule arrays to the generation of dynamic intra-nuclear microtubules required for spindle assembly. We utilize a gene knockout of Kif9, a Dictyostelium discoideum Kin-I kinesin, to destabilize the physical association between centrosomes and the nuclear envelope. This approach presents a unique opportunity to reveal temporal and spatial components in the regulation of centrosomal activities in a closed-mitosis organism. Here we report that centrosome–nuclear engagement is not required for the entry into mitosis. Although detached centrosomes can duplicate in the cytoplasm, neither they nor nuclei alone can produce spindle-like microtubule arrays. However, the physical association of centrosomes and the nuclear envelope is required to progress through mitosis beyond prometaphase

    Pushing Forces Drive the Comet-like Motility of Microtubule Arrays in Dictyostelium

    No full text
    Overexpression of dynein fragments in Dictyostelium induces the movement of the entire interphase microtubule array. Centrosomes in these cells circulate through the cytoplasm at rates between 0.4 and 2.5 μm/s and are trailed by a comet-tail like arrangement of the microtubule array. Previous work suggested that these cells use a dynein-mediated pulling mechanism to generate this dramatic movement and that similar forces are at work to maintain the interphase MTOC position in wild-type cells. In the present study, we address the nature of the forces used to produce microtubule movement. We have used a laser microbeam to sever the connection between the motile centrosomes and trailing microtubules, demonstrating that the major force for such motility results from a pushing on the microtubules. We eliminate the possibility that microtubule assembly/disassembly reactions are significant contributors to this motility and suggest that the cell cortex figures prominently in locating force-producing molecules. Our findings indicate that interphase microtubules in Dictyostelium are subject to both dynein- and kinesin-like forces and that these act in concert to maintain centrosome position in the cell and to support the radial character of the microtubule network
    corecore