99 research outputs found

    Ion kinetic effects on the ignition and burn of ICF targets

    Get PDF
    In this Article, we study the hydrodynamics and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level. The analysis is based on a two-velocity-scale Vlasov-Fokker-Planck kinetic model that is specially tailored to treat fusion products (suprathermal α-particles) in a self-consistent manner with the thermal bulk. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. Compared to fluid simulations where a multi-group diffusion scheme is applied to model α transport, the full ion-kinetic approach reveals significant non-local effects on the transport of energetic α-particles. This has a direct impact on hydrodynamic spatial profiles during combustion: the hot spot reactivity is reduced, while the inner dense fuel layers are preheated by the escaping α-suprathermal particles, which are transported farther out of the hot spot. We show how the kinetic transport enhancement of fusion products leads to a significant reduction of the fusion yield

    Fokker Planck kinetic modeling of suprathermal alpha-particles in a fusion plasma

    Get PDF
    We present an ion kinetic model describing the ignition and burn of the deuterium-tritium fuel of inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (alpha-particles) at a kinetic level. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal alpha-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes

    Electron kinetic effects in the nonlinear evolution of a driven ion-acoustic wave

    Get PDF
    The electron kinetic effects are shown to play an important role in the nonlinear evolution of a driven ion-acoustic wave. The numerical simulation results obtained (i) with a hybrid code, in which the electrons behave as a fluid and the ions are described along the particle-in-cell (PIC) method, are compared with those obtained (ii) with a full-PIC code, in which the kinetic effects on both species are retained. The electron kinetic effects interplay with the usual fluid-type nonlinearity to give rise to a broadband spectrum of ion-acoustic waves saturated at a low level, even in the case of a strong excitation. This low asymptotic level might solve the long-standing problem of the small stimulated Brillouin scattering reflectivity observed in laser-plasma interaction experiments

    X-ray amplification from a Raman Free Electron Laser

    Get PDF
    accepted for publication in Phys. Rev. Lett. 03/11/2012We demonstrate that a mm-scale free electron laser can operate in the X-ray range, in the interaction between a moderately relativistic electron bunch, and a transverse high intensity optical lattice. The corrugated light-induced ponderomotive potential acts simultaneously as a guide and as a low-frequency wiggler, triggering stimulated Raman scattering. The gain law in the small signal regime is derived in a fluid approach, and confirmed from Particle-In-Cell simulations. We describe the nature of bunching, and discuss the saturation properties. The resulting all-optical Raman X-ray laser opens perspectives for ultra-compact coherent light sources up to the hard X-ray range

    Comment on “Signatures of the Unruh effect via high-power, short-pulse lasers”

    Full text link

    Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air

    Get PDF
    International audienceThe transition-Cherenkov terahertz radiation from a femtosecond laser filament in air is enhanced by three orders of magnitude in the presence of a longitudinal static electric field, while the radiation pattern and the polarization remain the same. An amplified longitudinal electron current inside the filament is responsible for this amplified terahertz emission

    Laser matter interaction in the bulk of transparent dielectrics: Confined micro-explosion

    Get PDF
    We present here the experimental and theoretical studies of drastic transformations induced by a single powerful femtosecond laser pulse tightly focused inside a transparent dielectric, that lead to void formation in the bulk. We show that the laser pulse energy absorbed within a volume of less than 1μm3 creates the conditions with pressure and temperature range comparable to that formed by an exploding nuclear bomb. At the laser intensity above 6 × 1012 W/cm2 the material within this volume is rapidly atomized, ionized, and converted into a tiny super-hot cloud of expanding plasma. The expanding plasma generates strong shock and rarefaction waves which result in the formation of a void. Our modelling indicates that unique states of matter can be created using a standard table-top laser in well-controlled laboratory conditions. This state of matter has temperatures 105 K, heating rate up to the 1018 K/s, and pressure more than 100 times the strength of any solid. The laser-affected sites in the bulk were detected ("read") by generation of white continuum using probe femtosecond pulses at much lower laser intensity of 1010 W/cm 2 - 1011 W/cm2. Post-examination of voids with an electron microscope revealed a typical size of the void ranges from 200 to 500 nm. These studies will find application for the design of 3D optical memory devices and for formation of photonic band-gap crystals
    corecore