29 research outputs found

    Triggering receptor expressed on myeloid cells (TREM)-2 Impairs host defense in experimental melioidosis

    Get PDF
    Triggering receptor expressed on myeloid cells (TREM) -1 and TREM-2 are key regulators of the inflammatory response that are involved in the clearance of invading pathogens. Melioidosis, caused by the "Tier 1" biothreat agent Burkholderia pseudomallei, is a common form of community-acquired sepsis in Southeast-Asia. TREM-1 has been suggested as a biomarker for sepsis and melioidosis. We aimed to characterize the expression and function of TREM-1 and TREM-2 in melioidosis.Wild-type, TREM-1/3 (Trem-1/3-/-) and TREM-2 (Trem-2-/-) deficient mice were intranasally infected with live B. pseudomallei and killed after 24, and/or 72 h for the harvesting of lungs, liver, spleen, and blood. Additionally, survival studies were performed. Cellular functions were further analyzed by stimulation and/or infection of isolated cells. TREM-1 and TREM-2 expression was increased both in the lung and liver of B. pseudomallei-infected mice. Strikingly, Trem-2-/-, but not Trem-1/3-/-, mice displayed a markedly improved host defense as reflected by a strong survival advantage together with decreased bacterial loads, less inflammation and reduced organ injury. Cellular responsiveness of TREM-2, but not TREM-1, deficient blood and bone-marrow derived macrophages (BMDM) was diminished upon exposure to B. pseudomallei. Phagocytosis and intracellular killing of B. pseudomallei by BMDM and alveolar macrophages were TREM-1 and TREM-2-independent.We found that TREM-2, and to a lesser extent TREM-1, plays a remarkable detrimental role in the host defense against a clinically relevant Gram-negative pathogen in mice: TREM-2 deficiency restricts the inflammatory response, thereby decreasing organ damage and mortality

    Osteopontin Impairs Host Defense During Pneumococcal Pneumonia

    No full text
    Methods. To determine the role of osteopontin in the host response during pneumococcal pneumonia, osteopontin knockout (KO) and normal wild-type (WT) mice were intranasally infected with viable S. pneumoniae. Results. Pneumonia was associated with a rapid increase in pulmonary osteopontin concentrations in WT mice from 6 h onward. Osteopontin KO mice showed a prolonged survival relative to WT mice, which was accompanied by diminished pulmonary bacterial growth and reduced dissemination to distant body sites. In addition, at 48 h after infection pulmonary inflammation was decreased in osteopontin KO mice as reflected by lower inflammation scores and reduced chemokine concentrations. In contrast to pneumococcal pneumonia, osteopontin deficiency did not influence bacterial growth in primary pneumococcal sepsis induced by direct intravenous infection, suggesting that the detrimental effect of osteopontin on antibacterial defense during pneumonia primarily is exerted in the pulmonary compartment. Moreover, recombinant osteopontin stabilized S. pneumoniae viability in vitro. Conclusions. These results suggest that the pneumococcus misuses osteopontin in the airways for optimal growth and to cause invasive disease after entering the lower airway

    DNAX-Activating Protein of 12 kDa Impairs Host Defense in Pneumococcal Pneumonia

    No full text
    Objectives: Streptococcus pneumoniae is the most common causative organism in community-acquired pneumonia responsible for millions of deaths every year. DNAX-activating protein of 12 kDa is an adaptor molecule for different myeloid expressed receptors involved in innate immunity. Design: Animal study. Setting: University research laboratory. Subjects: DNAX-activating protein of 12 kDa-deficient (dap12(-/-)) and wild-type mice. Interventions: Mice were intranasally infected with S. pneumoniae. In addition, ex vivo responsiveness of alveolar macrophages was examined. Measurements and Main Results: dap12(-/-) alveolar macrophages released more tumor necrosis factor-a upon stimulation with S. pneumoniae and displayed increased phagocytosis of this pathogen compared with wild-type cells. After infection with S. pneumoniae via the airways, dap12(-/-) mice demonstrated reduced bacterial outgrowth in the lungs together with delayed dissemination to distant body sites relative to wild-type mice. This favorable response in dap12(-/-) mice was accompanied by reduced lung inflammation and an improved survival. Conclusions: These data suggest that DNAX-activating protein of 12 kDa impairs host defense during pneumococcal pneumonia at the primary site of infection at least in part by inhibiting phagocytosis by alveolar macrophage

    Triggering receptor expressed on myeloid cells-1 (TREM-1) improves host defence in pneumococcal pneumonia

    No full text
    Streptococcus (S.) pneumoniae is a common Gram-positive pathogen in community-acquired pneumonia and sepsis. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a receptor on phagocytes known to amplify inflammatory responses. Previous studies showed that TREM-1 inhibition protects against lethality during experimental Gram-negative sepsis. We here aimed to investigate the role of TREM-1 in an experimental model of pneumococcal pneumonia, using TREM-1/3-deficient (Trem-1/3(-/-) ) and wild-type (Wt) mice. Additionally ex vivo responsiveness of Trem-1/3(-/-) neutrophils and macrophages was examined. S. pneumoniae infection resulted in a rapid recruitment of TREM-1-positive neutrophils into the bronchoalveolar space, while high constitutive TREM-1 expression on alveolar macrophages remained unchanged. TREM-1/3 deficiency led to increased lethality, accompanied by enhanced growth of S. pneumoniae at the primary site of infection and increased dissemination to distant organs. Within the first 3-6 h of infection, Trem-1/3(-/-) mice demonstrated a strongly impaired innate immune response in the airways, as reflected by reduced local release of cytokines and chemokines and a delayed influx of neutrophils. Trem-1/3(-/-) alveolar macrophages produced fewer cytokines upon exposure to S. pneumoniae in vitro and were less capable of phagocytosing this pathogen. TREM-1/3 deficiency did not influence neutrophil responsiveness to S. pneumoniae. These results identify TREM-1 as a key player in protective innate immunity during pneumococcal pneumonia, most likely by enhancing the early immune response of alveolar macrophage

    Role of Nucleotide-Binding Oligomerization Domain-Containing (NOD) 2 in Host Defense during Pneumococcal Pneumonia.

    No full text
    Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD) 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2-/-) and wild-type (Wt) alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2-/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39), an isogenic capsule locus deletion mutant (D39Δcps) or serotype 3 S. pneumoniae (6303) via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2-/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2-/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2-/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2-/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2

    Lipopolysaccharide inhibits Th2 lung inflammation induced by house dust mite allergens in mice

    No full text
    The complex biology of asthma compels the use of more relevant human allergens, such as house dust mite (HDM), to improve the translation of animal models into human asthma. LPS exposure is associated with aggravations of asthma, but the mechanisms remain unclear. Here, we studied the effects of increasing LPS doses on HDM-evoked allergic lung inflammation. To this end, mice were intranasally sensitized and challenged with HDM with or without increasing doses of LPS (0.001-10 μg). LPS dose-dependently inhibited HDM-induced eosinophil recruitment into the lungs and mucus production in the airways. LPS attenuated the production of Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in HDM-challenged lungs, while enhancing the HDM-induced release of IL-17, IL-33, IFN-γ, and TNF-α. The shift toward a Th1 inflammatory response was further illustrated by predominant neutrophilic lung inflammation after LPS administration at higher doses. LPS did not influence HDM-induced plasma IgE concentrations. Although LPS did not significantly affect the activation of coagulation or complement in HDM-challenged lungs, it reduced HDM-initiated endothelial cell activation. This study is the first to provide insights into the effects of LPS in an allergic lung inflammation model making use of a clinically relevant allergen without a systemic adjuvant, revealing that LPS dose-dependently inhibits HDM-induced pulmonary Th2 response

    NOD2 deficiency reduces the capacity of alveolar macrophages and neutrophils to internalize <i>S</i>. <i>pneumoniae in vitro</i>.

    No full text
    <p>Growth arrested, FITC labeled <i>S</i>. <i>pneumoniae</i> D39 were incubated with alveolar macrophages (A) or CFSE-labeled <i>S</i>. <i>pneumoniae</i> D39 with peripheral blood neutrophils (B) from wild-type (Wt) and <i>Nod2</i><sup><i>−/−</i></sup> mice at 4°C (n = 3–4 per mouse strain) or 37°C (n = 6–8 per mouse strain) for 1 hour after which phagocytosis was quantified. Data are expressed as box-and-whisker diagrams depicting the smallest observation, lower quartile, median, upper quartile and largest observation; *<i>P</i><0.05, ***<i>P</i><0.001 versus Wt cells.</p
    corecore