471 research outputs found

    Metagenomic Profiling Reveals Lignocellulose Degrading System in a Microbial Community Associated with a Wood-Feeding Beetle

    Get PDF
    The Asian longhorned beetle (Anoplophora glabripennis) is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A. glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We previously demonstrated that lignin, cellulose, and hemicellulose are actively deconstructed in the beetle gut and that the gut harbors an assemblage of microbes hypothesized to make significant contributions to these processes. While lignin degrading mechanisms have been well characterized in pure cultures of white rot basidiomycetes, little is known about such processes in microbial communities associated with wood-feeding insects. The goals of this study were to develop a taxonomic and functional profile of a gut community derived from an invasive population of larval A. glabripennis collected from infested host trees and to identify genes that could be relevant for the digestion of woody tissue and nutrient acquisition. To accomplish this goal, we taxonomically and functionally characterized the A. glabripennis midgut microbiota through amplicon and shotgun metagenome sequencing and conducted a large-scale comparison with the metagenomes from a variety of other herbivoreassociated communities. This analysis distinguished the A. glabripennis larval gut metagenome from the gut communities of other herbivores, including previously sequenced termite hindgut metagenomes. Genes encoding enzymes were identified in the A. glabripennis gut metagenome that could have key roles in woody tissue digestion including candidate lignin degrading genes (laccases, dye-decolorizing peroxidases, novel peroxidases and β- etherases), 36 families of glycoside hydrolases (such as cellulases and xylanases), and genes that could facilitate nutrient recovery, essential nutrient synthesis, and detoxification. This community could serve as a reservoir of novel enzymes to enhance industrial cellulosic biofuels production or targets for novel control methods for this invasive and highly destructive insect

    Complete genome sequence of Staphylothermus marinus Stetter and Fiala 1986 type strain F1

    Get PDF
    Staphylothermus marinus Fiala and Stetter 1986 belongs to the order Desulfurococcales within the archaeal phylum Crenarchaeota. S. marinus is a hyperthermophilic, sulfur-dependent, anaerobic heterotroph. Strain F1 was isolated from geothermally heated sediments at Vulcano, Italy, but S. marinus has also been isolated from a hydrothermal vent on the East Pacific Rise. We report the complete genome of S. marinus strain F1, the type strain of the species. This is the fifth reported complete genome sequence from the order Desulfurococcales

    Complete genome sequence of Meiothermus silvanus type strain (VI-R2).

    Get PDF
    Meiothermus silvanus (Tenreiro et al. 1995) Nobre et al. 1996 belongs to a thermophilic genus whose members share relatively low degrees of 16S rRNA gene sequence similarity. Meiothermus constitutes an evolutionary lineage separate from members of the genus Thermus, from which they can generally be distinguished by their slightly lower temperature optima. M. silvanus is of special interest as it causes colored biofilms in the paper making industry and may thus be of economic importance as a biofouler. This is the second completed genome sequence of a member of the genus Meiothermus and only the third genome sequence to be published from a member of the family Thermaceae. The 3,721,669 bp long genome with its 3,667 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project
    • …
    corecore