34 research outputs found
Heat flow, seismic cutoff depth and thermal modeling of the Fennoscandian Shield
Being far from plate boundaries but covered with seismograph networks, the Fennoscandian Shield features an ideal test laboratory for studies of intraplate seismicity. For this purpose, this study applies 4190 earthquake events from years 2000–2015 with magnitudes ranging from 0.10 to 5.22 in Finnish and Swedish national catalogues. In addition, 223 heat flow determinations from both countries and their immediate vicinity were used to analyze the potential correlation of earthquake focal depths and the spatially interpolated heat flow field. Separate subset analyses were performed for five areas of notable seismic activity: the southern Gulf of Bothnia coast of Sweden (area 1), the northern Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland (area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). In total, our subsets incorporated 3619 earthquake events. No obvious relation of heat flow and focal depth exists, implying that variations of heat flow are primarily caused by shallow lying heat producing units instead of deeper sources. This allows for construction of generic geotherms for the range of representative palaeoclimatically corrected (steady-state) surface heat flow values (40–60 mWm−2). The one-dimensional geotherms constructed for a three-layer crust and lithospheric upper mantle are based on mantle heat flow constrained with the aid of mantle xenolith thermobarometry (9–15 mWm−2), upper crustal heat production values (3.3–1.1 μWm−3), and the brittle-ductile transition temperature (350 °C) assigned to the cutoff depth of seismicity (28 ± 4 km). For the middle and lower crust heat production values of 0.6 and 0.2 μWm−3 were assigned, respectively. The models suggest a Moho temperature range of 460 to 500 °C.Being far from plate boundaries but covered with seismograph networks, the Fennoscandian Shield features an ideal test laboratory for studies of intraplate seismicity. For this purpose, this study applies 4190 earthquake events from years 2000–2015 with magnitudes ranging from 0.10 to 5.22 in Finnish and Swedish national catalogues. In addition, 223 heat flow determinations from both countries and their immediate vicinity were used to analyse the potential correlation of earthquake focal depths and the spatially interpolated heat flow field. Separate subset analyses were performed for five areas of notable seismic activity: the southern Gulf of Bothnia coast of Sweden (area 1), the northern Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland (area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). In total, our subsets incorporated 3619 earthquake events. No obvious relation of heat flow and focal depth exists, implying that variations of heat flow are primarily caused by shallow lying heat producing units instead of deeper sources. This allows for construction of generic geotherms for the range of representative palaeoclimatically corrected (steady-state) surface heat flow values (40–60 mW m−2). The 1-D geotherms constructed for a three-layer crust and lithospheric upper mantle are based on mantle heat flow constrained with the aid of mantle xenolith thermobarometry (9–15 mW m−2), upper crustal heat production values (3.3–1.1 μWm−3) and the brittle-ductile transition temperature (350 °C) assigned to the cut-off depth of seismicity (28 ± 4 km). For the middle and lower crust heat production values of 0.6 and 0.2 μWm−3 were assigned, respectively. The models suggest a Moho temperature range of 460–500 °C.Peer reviewe
Automatic classification of seismic events within a regional seismograph network
This paper presents a fully automatic method for seismic event classification within a sparse regional seismograph network. The method is based on a supervised pattern recognition technique called the Support Vector Machine (SVM). The classification relies on differences in signal energy distribution between natural and artificial seismic sources. We filtered seismic records via 20 narrow band-pass filters and divided them into four phase windows: P, P coda, S, and S coda. We then computed a short-term average (STA) value for each filter channel and phase window. The 80 discrimination parameters served as a training model for the SVM. We calculated station specific SVM models for 19 on-line seismic stations in Finland. The training data set included 918 positive (earthquake) and 3469 negative (non-earthquake) examples. An independent test period determined method and rules for integrating station-specific classification results into network results. Finally, we applied the network classification rules to independent evaluation data comprising 5435 fully automatic event determinations, 5404 of which had been manually identified as explosions or noise, and 31 as earthquakes. The SVM method correctly identified 94% of the non-earthquakes and all but one of the earthquakes. The result implies that the SVM tool can identify and filter out blasts and spurious events from fully automatic event solutions with a high level of accuracy. The tool helps to reduce the work-load and costs of manual seismic analysis by leaving only a small fraction of automatic event determinations, the probable earthquakes, for more detailed seismological analysis. The self-learning approach presented here is flexible and easily adjustable to the requirements of a denser or wider high-frequency network.Peer reviewe
Optimal configuration of the local Ostrobothnian seismic network OBF
This study simulates automatic event detection and location performance of a micro-earthquake network centered around a site selected for a future power plant in Finland, Fennoscandian Shield. Simulation of the event location capability is based on a relationship derived between event magnitude and maximum detection distance. Azimuthal coverage and threshold magnitude are computed for different station configurations and the results are presented as contour maps. An optimal configuration of ten seismograph stations is proposed for further on-site surveyNon peer reviewe
Full-Scale Crustal Interpretation of Kokkola–Kymi (KOKKY) Seismic Profile, Fennoscandian Shield
The Kokkola–Kymi Deep Seismic Sounding profile crosses the Fennoscandian Shield in northwest-southeast (NW–SE) direction from Bothnian belt to Wiborg rapakivi batholith through Central Finland granitoid complex (CFGC). The 490-km refraction seismic line is perpendicular to the orogenic strike in Central Finland and entirely based on data from quarry blasts and road construction sites in years 2012 and 2013. The campaign resulted in 63 usable seismic record sections. The average perpendicular distance between these and the profile was 14 km. Tomographic velocity models were computed with JIVE3D program. The velocity fields of the tomographic models were used as starting points in the ray tracing modelling. Based on collected seismic sections a layer-cake model was prepared with the ray tracing package SEIS83. Along the profile, upper crust has an average thickness of 22 km average, and P-wave velocities (Vp) of 5.9–6.2 km/s near the surface, increasing downward to 6.25–6.40 km/s. The thickness of middle crust is 14 km below CFGC, 20 km in SE and 25 km in NW, but Vp ranges from 6.6 to 6.9 km/s in all parts. Lower crust has Vp values of 7.35–7.4 km/s and lithospheric mantle 8.2–8.25 km/s. Moho depth is 54 km in NW part, 63 km in the middle and 43 km in SW, yet a 55-km long section in the middle does not reveal an obvious Moho reflection. S-wave velocities vary from 3.4 km/s near the surface to 4.85 km/s in upper mantle, consistently with P-wave velocity variations. Results confirm the previously assumed high-velocity lower crust and depression of Moho in central Finland.Peer reviewe
The 2018 Geothermal Reservoir Stimulation in Espoo/Helsinki, Southern Finland: Seismic Network Anatomy and Data Features
A seismic network was installed in Helsinki, Finland to monitor the response to an similar to 6-kilometer-deep geothermal stimulation experiment in 2018. We present initial results of multiple induced earthquake seismogram and ambient wavefield analyses. The used data are from parts of the borehole network deployed by the operating St1 Deep Heat Company, from surface broadband sensors and 100 geophones installed by the Institute of Seismology, University of Helsinki, and from Finnish National Seismic Network stations. Records collected in the urban environment contain many signals associated with anthropogenic activity. This results in time- and frequency-dependent variations of the signal-to-noise ratio of earthquake records from a 260-meter-deep borehole sensor compared to the combined signals of 24 collocated surface array sensors. Manual relocations of similar to 500 events indicate three distinct zones of induced earthquake activity that are consistent with the three clusters of seismicity identified by the company. The fault-plane solutions of 14 selected ML 0.6-1.8 events indicate a dominant reverse-faulting style, and the associated SH radiation patterns appear to control the first-order features of the macroseismic report distribution. Beamforming of earthquake data from six arrays suggests heterogeneous medium properties, in particular between the injection site and two arrays to the west and southwest. Ambient-noise cross-correlation functions reconstruct regional surface-wave propagation and path-dependent body-wave propagation. A 1D inversion of the weakly dispersive surface waves reveals average shear-wave velocities around 3.3 km/s below 20 m depth. Consistent features observed in relative velocity change time series and in temporal variations of a proxy for wavefield partitioning likely reflect the medium response to the stimulation. The resolution properties of the obtained data can inform future monitoring strategies and network designs around natural laboratories.Peer reviewe
Local seismic network for monitoring of a potential nuclear power plant area
This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ∼ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = −0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ∼ −0.1) within 25 km radius and 5 (ML ≥ ∼−0.1 to ∼0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1–2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1–2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and location capability of the network.This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ∼ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = −0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ∼ −0.1) within 25 km radius and 5 (ML ≥ ∼−0.1 to ∼0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1–2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1–2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and location capability of the network.Peer reviewe
Mantle lithosphere transition from the East European Craton to the Variscan Bohemian Massif imaged by shear-wave splitting
We analyse splitting of teleseismic shear waves recorded during the PASSEQ passive experiment (2006–2008) focused on the upper mantle structure across and around the Trans-European Suture Zone (TESZ). Altogether 1009 pairs of the delay times of the slow split shear waves and orientations of the polarized fast shear waves exhibit lateral variations across the array, as well as back-azimuth dependences of measurements at individual stations. Variable components of the splitting parameters can be associated with fabrics of the mantle lithosphere of tectonic units. In comparison with a distinct regionalization of the splitting parameters in the Phanerozoic part of Europe that particularly in the Bohemian Massif (BM) correlate with the large-scale tectonics, variations of anisotropic parameters around the TESZ and in the East European Craton (EEC) are smooth and of a transitional character. No general and abrupt change in the splitting parameters (anisotropic structure) can be related to the Teisseyre–Tornquist Zone (TTZ), marking the edge of the Precambrian province on the surface. Instead, regional variations of anisotropic structure were found along the TESZ/TTZ. The coherence of anisotropic signals evaluated beneath the northern part of the Brunovistulian in the eastern rim of the BM and the pattern continuation to the NE towards the TTZ, support the idea of a common origin of the lithosphere micro-plates, most probably related to Baltica. Smooth changes in polarizations of the core-mantle boundary refracted shear waves (SKS), polarizations, or even a large number of null splits northward of the BM and further across the TESZ towards the EEC indicate less coherent fabrics and a transitional character of structural changes in the mantle beneath the surface trace of the TESZ/TTZ. The narrow and near-vertical TTZ in the crust does not seem to have a steep continuation in the mantle lithosphere. The mantle part of the TESZ, whose crust was formed by an assemblage of suspect terranes adjoining the EEC edge from the southwest, appears in our measurements of anisotropy as a relatively broad transitional zone in between the two lithospheric segments of different ages. We suggest a southwestward continuation of the Precambrian mantle lithosphere beneath the TESZ and the adjacent Phanerozoic part of Europe, probably as far as towards the Bohemian Massif.Peer reviewe
Helsingin seisminen asemaverkko ja seismisyys 2019
Helsinkiin on vuoden 2019 aikana suunniteltu kolmen aseman seismistä verkkoa, HelsinkiNet:iä, joka täydentää Suomen kansallista seimistä verkkoa Helsingissä ja sen lähialueilla. HelsinkiNet:in havaintojen avulla alueelta voidaan havaita pienempiä seismisiä tapauksia kuin aiemmin ja tapaukset
voidaan paikantaa tarkemmin.
Verkon suunnitelluilla asemapaikoilla on suoritettu testimittauksia syksyllä 2019. Verkko rakennetaan valmiiksi vuonna 2020. Helsingin Yliopiston Seismologian instituutti kerää asemien rekisteröimän aineiston ja paikantaa alueen tapaukset automaattisesti. Instituutti analysoi manuaalisesti maanjäristykset tai muuten merkittävät tapaukset ja tiedottaa niistä tarvittaessa Helsingin kaupungille.
Vuonna 2019 Seismologian instituutti on analysoinut Helsingistä ja sen lähialueilta yhden maanjäristyksen, yhden indusoidun maanjäristyksen sekä 299 räjäytystä. Maanjäristys (ML0.9, 59.952°N, 24.967 °E) tapahtui 9.7.2019 merellä, lähellä Helsingin majakkaa. Indusoitu järistys (ML0.6, 60.191°N, 24.841 °E) tapahtui 9.5.2019 liittyen ST1:n geotermisen energian voimalaitoksen rakentamiseen.
Liitteessä 1 kerrotaan Helsingin ja sen lähialueiden seismisyydestä ja kaupungissa vuoden 1829 jälkeen havaituista maanjäristyksistä.A three-station seismic network, HelsinkiNet, has been planned to Helsinki during 2019. The network will complement the Finnish National Seismic Network in the Helsinki region, lowering the detection treshold and improving location accuracy of seismic events.
During autumn 2019 test measurements were conducted at the planned station locations. The network will be built during 2020. Institute of Seismology of the University of Helsinki (ISUH) will gather data from the stations, and perform automatic event detection. ISUH will analyse earthquakes and other significant events manually, and inform Helsinki City when necessary.
In 2019 ISUH has analysed one earthquake, one induced earthquake, and 299 explosions from the Helsinki area. The earthquake (ML0.9, 59.952°N, 24.967 °E) occurred on 9th July under the sea, nearHelsinki lighthouse. The induced earthquake (ML0,6, 60.191°N, 24.841 °E) occurred on 9th May in Otaniemi, probably due to ST1 geothermal plant construction.
In appendix 1 (Liite1) seismicity in Helsinki, and earthquake observations by residents there since 1829 are described