124 research outputs found

    Observation of inter-Landau-level quantum coherence in semiconductor quantum wells

    Full text link
    Using three-pulse four-wave-mixing femtosecond spectroscopy, we excite a non-radiative coherence between the discrete Landau levels of an undoped quantum well and study its dynamics. We observe quantum beats that reflect the time evolution of the coherence between the two lowest Landau level magnetoexcitons. We interpret our observations using a many-body theory and find that the inter Landau level coherence decays with a new time constant, substantially longer than the corresponding interband magnetoexciton dephasing times. Our results indicate a new intraband excitation dynamics that cannot be described in terms of uncorrelated interband excitations.Comment: 5 pages, 5 figures, to appear in Phys. Rev. B Rapid Communication

    Ultrafast dynamics of coherences in the quantum Hall system

    Full text link
    Using three-pulse four-wave-mixing optical spectroscopy, we study the ultrafast dynamics of the quantum Hall system. We observe striking differences as compared to an undoped system, where the 2D electron gas is absent. In particular, we observe a large off-resonant signal with strong oscillations. Using a microscopic theory, we show that these are due to many-particle coherences created by interactions between photoexcited carriers and collective excitations of the 2D electron gas. We extract quantitative information about the dephasing and interference of these coherences.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    Engineering Fano resonances in discrete networks

    Full text link
    We study transmission properties of discrete networks composed of linear arrays coupled to systems of N side defects, and demonstrate the basic principles of the resonant scattering management through engineering Fano resonances. We find exact solutions for the wave transmission coefficient and reveal the conditions for the perfect reflections and transmissions due to either destructive or constructive interferences. We associate these reflections and transmissions with Fano resonances, and demonstrate how they can be tuned by introducing nonlinear defects into the network.Comment: 6 pages, 5 figures, accepted for publication in Phys. Rev.

    Nonlinear frequency mixing in quantum cascade lasers: Towards broadband wavelength shifting and THz up-conversion

    Get PDF
    Terahertz (THz) sideband generation on a near-infrared (NIR) carrier has been recently demonstrated using quantum cascade lasers (QCL), with potential applications in wavelength shifting and THz up-conversion. However, the NIR wavelength range and nonlinear efficiency were severely limited by absorption. Here we overcome this drawback through a novel reflection geometry, whilst preserving a large interaction area. As well as insights into the nonlinear mechanism, this allows a much large range of NIR pump energies, relaxing the criteria of using particular excitation wavelengths

    Monolithic echo-less photoconductive switches for high-resolution terahertz time-domain spectroscopy

    Get PDF
    Interdigitated photoconductive (IPC) switches are convenient sources and detectors for terahertz (THz) time domain spectroscopy. However, reflection of the emitted or detected radiation within the device substrate can lead to echoes that inherently limits the spectroscopic resolution achievable. In this work, we design and realize low-temperature-grown-GaAs (LT-GaAs) IPC switches for THz pulse generation and detection that suppresses such unwanted echoes. This is realized through a monolithic geometry of an IPC switch with a metal plane buried at a subwavelength depth below the LT-GaAs surface. Using this device as a detector, and coupling it to an echo-less IPC source, enables echo-free THz-TDS and high-resolution spectroscopy, with a resolution limited only by the temporal length of the measurement governed by the mechanical delay line used
    corecore