1 research outputs found

    Reduction in ionic permeability of a silicone hydrogel contact lenses after one month of daily wear

    Full text link
    [EN] Purpose. To compare the ionic permeability using the ionoflux method of new and worn samples of a silicone hydrogel contact lens material. Methods. An ionoflux experimental setup was established to measure the ionic permeability (NaCl) of soft contact lenses. Samples of a silicone hydrogel lens (Comfilcon A, Coopervision, Pleasanton, CA) with optical powers of -1.00, -1.50 and -4.75 diopters (D) were used in this study. Three samples of each power were measured after being worn for one month on a daily wear basis. Lenses were cleaned and disinfected every night using multipurpose disinfecting solutions. Three samples of new lenses from the same batch and the same optical power were also measured to evaluate the effect of lens wear on the ionic permeability of the lens material. Before measurement, the lenses were equilibrated with a 1 M NaCl solution during one week before of each measurement. Results. Lens power had minimal effect on the ionic permeability of a modern silicone hydrogel contact lens with the -1.00 lens having a 15% lower permeability compared to the other two lenses. After one month of lens wear the apparent ionic permeability for lenses with -1.50 D decreased by 15%. In the case of -1.00 and -4.75 D lenses there was a decrease of 26%. Conclusions. The ionic permeability of silicone hydrogel lenses of different optical powers was not significantly different. Worn lenses present a significant reduction of the ionic permeability after a month of wear. The potential effect this reduction on lens movement and discomfort associated to lens wear should be further evaluated.The authors have no proprietary interest in any of the materials mentioned in this article. This work was funded in part by FEDER through the COMPTETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of projects PTDC/SAU-BEB/098391/2008, PTDC/SAU-BEB/098392/2008 and the Strategic Project PEST-C/FIS/UI607/2011.Ferreira Da Silva, AR.; Compañ Moreno, V.; Gonzalez-Meijome, JM. (2015). Reduction in ionic permeability of a silicone hydrogel contact lenses after one month of daily wear. Materials Research Express. 2(6). https://doi.org/10.1088/2053-1591/2/6/065007S26Yoon, S. C., & Jhon, M. S. (1982). The transport phenomena of some model solutes through postcrosslinked poly(2-hydroxyethyl methacrylate) membranes with different tactic precursors. Journal of Applied Polymer Science, 27(8), 3133-3149. doi:10.1002/app.1982.070270834Yasuda, H., Lamaze, C. E., & Ikenberry, L. D. (1968). Die Makromolekulare Chemie, 118(1), 19-35. doi:10.1002/macp.1968.021180102MURPHY, S., HAMILTON, C., & TIGHE, B. (1988). Synthetic hydrogels: 5. Transport processes in 2-hydroxyethyl methacrylate copolymers. Polymer, 29(10), 1887-1893. doi:10.1016/0032-3861(88)90407-7Nicolson, P. C., & Vogt, J. (2001). Soft contact lens polymers: an evolution. Biomaterials, 22(24), 3273-3283. doi:10.1016/s0142-9612(01)00165-xMonticelli, M. V., Chauhan, A., & Radke, C. J. (2005). The Effect of Water Hydraulic Permeability on the Settling of a Soft Contact Lens on the Eye. Current Eye Research, 30(5), 329-336. doi:10.1080/02713680590934085Guan, L., Jiménez, M. E. G., Walowski, C., Boushehri, A., Prausnitz, J. M., & Radke, C. J. (2011). Permeability and partition coefficient of aqueous sodium chloride in soft contact lenses. Journal of Applied Polymer Science, 122(3), 1457-1471. doi:10.1002/app.33336Cheng, M.-L., & Sun, Y.-M. (2005). Observation of the solute transport in the permeation through hydrogel membranes by using FTIR-microscopy. Journal of Membrane Science, 253(1-2), 191-198. doi:10.1016/j.memsci.2005.01.017CHHABRA, M., PRAUSNITZ, J., & RADKE, C. (2007). A single-lens polarographic measurement of oxygen permeability (Dk) for hypertransmissible soft contact lenses. Biomaterials, 28(30), 4331-4342. doi:10.1016/j.biomaterials.2007.06.024González-Méijome, J. M., López-Alemany, A., Almeida, J. B., & Parafita, M. A. (2009). Surface AFM microscopy of unworn and worn samples of silicone hydrogel contact lenses. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88B(1), 75-82. doi:10.1002/jbm.b.31153González-Méijome, J. M., López-Alemany, A., Almeida, J. B., & Parafita, M. A. (2008). Dynamic in vitro dehydration patterns of unworn and worn silicone hydrogel contact lenses. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90B(1), 250-258. doi:10.1002/jbm.b.31279Pozuelo, J., Compañ, V., González-Méijome, J. M., González, M., & Mollá, S. (2014). Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: An experimental and theoretical study. Journal of Membrane Science, 452, 62-72. doi:10.1016/j.memsci.2013.10.010Wolffsohn, J. S., Hunt, O. A., & Basra, A. K. (2009). Simplified recording of soft contact lens fit. Contact Lens and Anterior Eye, 32(1), 37-42. doi:10.1016/j.clae.2008.12.00
    corecore