158 research outputs found

    A New Sterol Diglycoside from Conyza floribunda

    Get PDF
    Chemical investigation of CH2Cl2 and MeOH extracts of Conyza floribunda have led to the isolation of (24S)-ethylcholesta-5, 22E, 25-trien-3-O-glucosyl (1”→ 4’)-rhamnoside (1), (24S)-ethylcholesta-5,25-dien-3-O-α-glucoside (2), cyasterone (3), stigmasta 5, 22-dien-3-acetate (4), stigmasta 5, 22-dien-3-ol (5), spinasta 7, 22-dien-3-ol (6), 3-oxofriedooleanane (7), 3-hydroxyfriedooleanane (8), 3-acetoxyfriedooleanane (9), betullinic acid (10), quercetin 3-O-α-glucoside (11), quercetin (12), myricetin (13) and kaempferol (14). Their structures were determined using spectroscopic and physical methods as well as comparison with data available in the literature.Keywords: Conyza floribunda, asteraceae, triterpenes, sterols, flavonol

    Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer

    Full text link
    Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH

    Formation of gutingimycin: analytical investigation of trioxacarcin A-mediated alkylation of dsDNA

    Get PDF
    Formation and fragmentation of recognition complexes between trioxacarcin A and various DNA sequences were examined by temperature-dependent UV and CD spectroscopy, HPLC analysis, and ESI mass spectrometry with regard to reaction conditions, intermediates, products, mechanism, and sequence specificity. Cleavage of the trioxacarcin–DNA complexes provided the natural product gutingimycin by guanine abstraction. The resulting DNA with an abasic site was further cleaved into a DNA fragment with a furanyl unit at the 3′-end and an oligonucleotide with a phosphorylated 5′-end

    Potentiation of anti-cancer drug activity at low intratumoral pH induced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) and its analogue benzylguanidine (BG)

    Get PDF
    Tumour-selective acidification is of potential interest for enhanced therapeutic gain of pH sensitive drugs. In this study, we investigated the feasibility of a tumour-selective reduction of the extracellular and intracellular pH and their effect on the tumour response of selected anti-cancer drugs. In an in vitro L1210 leukaemic cell model, we confirmed enhanced cytotoxicity of chlorambucil at low extracellular pH conditions. In contrast, the alkylating drugs melphalan and cisplatin, and bioreductive agents mitomycin C and its derivative EO9, required low intracellular pH conditions for enhanced activation. Furthermore, a strong and pH-independent synergism was observed between the pH-equilibrating drug nigericin and melphalan, of which the mechanism is unclear. In radiation-induced fibrosarcoma (RIF-1) tumour-bearing mice, the extracellular pH was reduced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) or its analogue benzylguanidine (BG) plus glucose. To simultaneously reduce the intracellular pH, MIBG plus glucose were combined with the ionophore nigericin or the Na+/H+ exchanger inhibitor amiloride and the Na+-dependent HCO3−/Cl−exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulphonic acid (DIDS). Biochemical studies confirmed an effective reduction of the extracellular pH to approximately 6.2, and anti-tumour responses to the interventions indicated a simultaneous reduction of the intracellular pH below 6.6 for at least 3 h. Combined reduction of extra- and intracellular tumour pH with melphalan increased the tumour regrowth time to 200% of the pretreatment volume from 5.7 ± 0.6 days for melphalan alone to 8.1 ± 0.7 days with pH manipulation (P< 0.05). Mitomycin C related tumour growth delay was enhanced by the combined interventions from 3.8 ± 0.5 to 5.2 ± 0.5 days (P< 0.05), but only in tumours of relatively large sizes. The interventions were non-toxic alone or in combination with the anti-cancer drugs and did not affect melphalan biodistribution. In conclusion, we have developed non-toxic interventions for sustained and selective reduction of extra- and intracellular tumour pH which potentiated the tumour responses to selected anti-cancer drugs. 1999 Cancer Research Campaig

    Polyamide-Scorpion Cyclam Lexitropsins Selectively Bind AT-Rich DNA Independently of the Nature of the Coordinated Metal

    Get PDF
    Cyclam was attached to 1-, 2- and 3-pyrrole lexitropsins for the first time through a synthetically facile copper-catalyzed “click” reaction. The corresponding copper and zinc complexes were synthesized and characterized. The ligand and its complexes bound AT-rich DNA selectively over GC-rich DNA, and the thermodynamic profile of the binding was evaluated by isothermal titration calorimetry. The metal, encapsulated in a scorpion azamacrocyclic complex, did not affect the binding, which was dominated by the organic tail

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe

    Palladium-mediated dealkylation of N-propargyl-floxuridine as a bioorthogonal oxygen-independent prodrug strategy

    Get PDF
    Herein we report the development and biological screening of a bioorthogonal palladium-labile prodrug of the nucleoside analogue floxuridine, a potent antineoplastic drug used in the clinic to treat advanced cancers. N-propargylation of the N3 position of its uracil ring resulted in a vast reduction of its biological activity (~6,250-fold). Cytotoxic properties were bioorthogonally rescued in cancer cell culture by heterogeneous palladium chemistry both in normoxia and hypoxia. Within the same environment, the reported chemo-reversible prodrug exhibited up to 1,450-fold difference of cytotoxicity whether it was in the absence or presence of the extracellular palladium source, underlining the precise modulation of bioactivity enabled by this bioorthogonally-activated prodrug strategy
    corecore