3,819 research outputs found
Got rhythm? Better inhibitory control is linked with more consistent drumming and enhanced neural tracking of the musical beat in adult percussionists and nonpercussionists
Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements “in time” and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function
Along The Old Lake Trail
https://digitalcommons.library.umaine.edu/mmb-vp/3836/thumbnail.jp
A potential library for primary MFL pedagogy: the case of Young Pathfinders
As readers of this journal will know very well, 2010 will see all KS2 (ages 7-11) pupils in England entitled to learn a modern foreign language in normal curriculum time. This development of the commitment to primary language learning should provide an excellent opportunity and experience for pupils, whilst at the same time requiring some radical changes for many teachers, schools and much of the wider language learning community.
Recent research has indicated general trends suggesting an increase in primary languages already, in anticipation of this development and even beforehand. One of the most recent studies indicates that 43% of primary children currently learn a foreign language at KS2, either in class or as an extra-curricular activity, although the extent of this learning varies considerably (Driscoll, Jones and Macrory, 2004). It has also been suggested (Muijs et al, 2005) that there are certain aspects of the process that will be particularly demanding if the challenge of providing this entitlement are to be met
Estimating interactions and subgroup-specific treatment effects in meta-analysis without aggregation bias: A within-trial framework
Estimation of within-trial interactions in meta-analysis is crucial for reliable assessment of how treatment effects vary across participant subgroups. However, current methods have various limitations. Patients, clinicians and policy-makers need reliable estimates of treatment effects within specific covariate subgroups, on relative and absolute scales, in order to target treatments appropriately - which estimation of an interaction effect does not in itself provide. Also, the focus has been on covariates with only two subgroups, and may exclude relevant data if only a single subgroup is reported. Therefore, in this article we further develop the "within-trial" framework by providing practical methods to (1) estimate within-trial interactions across two or more subgroups; (2) estimate subgroup-specific ("floating") treatment effects that are compatible with the within-trial interactions and make maximum use of available data; and (3) clearly present this data using novel implementation of forest plots. We described the steps involved and apply the methods to two examples taken from previously published meta-analyses, and demonstrate a straightforward implementation in Stata based upon existing code for multivariate meta-analysis. We discuss how the within-trial framework and plots can be utilised with aggregate (or "published") source data, as well as with individual participant data, to effectively demonstrate how treatment effects differ across participant subgroups
Graphics for uncertainty
Graphical methods such as colour shading and animation, which are widely available, can be very effective in communicating uncertainty. In particular, the idea of a ‘density strip’ provides a conceptually simple representation of a distribution and this is explored in a variety of settings, including a comparison of means, regression and models for contingency tables. Animation is also a very useful device for exploring uncertainty and this is explored particularly in the context of flexible models, expressed in curves and surfaces whose structure is of particular interest. Animation can further provide a helpful mechanism for exploring data in several dimensions. This is explored in the simple but very important setting of spatiotemporal data
Human papillomavirus infection and risk of progression of epithelial abnormalities of the cervix.
The polymerase chain reaction has been used to determine the presence of human papillomavirus (HPV) 16 and HPV 18 DNA sequences in archival histological material removed from a cohort of untreated women with cervical epithelial abnormalities. The detection of HPV 16 or HPV 18 DNA sequences in the initial biopsy specimen was associated with a significantly increased risk of subsequent disease progression
Structure and Metal Binding Properties of ZnuA, a Periplasmic Zinc Transporter from \u3cem\u3eEscherichia coli\u3c/em\u3e
ZnuA is the periplasmic Zn2+-binding protein associated with the high-affinity ATP-binding cassette ZnuABC transporter from Escherichia coli. Although several structures of ZnuA and its homologs have been determined, details regarding metal ion stoichiometry, affinity, and specificity as well as the mechanism of metal uptake and transfer remain unclear. The crystal structures of E. coli ZnuA (Eco-ZnuA) in the apo, Zn2+-bound, and Co2+-bound forms have been determined. ZnZnuA binds at least two metal ions. The first, observed previously in other structures, is coordinated tetrahedrally by Glu59, His60, His143, and His207. Replacement of Zn2+ with Co2+ results in almost identical coordination geometry at this site. The second metal binding site involves His224 and several yet to be identified residues from the His-rich loop that is unique to Zn2+ periplasmic metal binding receptors. Electron paramagnetic resonance and X-ray absorption spectroscopic data on CoZnuA provide additional insight into possible residues involved in this second site. The second site is also detected by metal analysis and circular dichroism (CD) titrations. Eco-ZnuA binds Zn2+ (estimated K d \u3c 20 nM), Co2+, Ni2+, Cu2+, Cu+, and Cd2+, but not Mn2+. Finally, conformational changes upon metal binding observed in the crystal structures together with fluorescence and CD data indicate that only Zn2+ substantially stabilizes ZnuA and might facilitate recognition of ZnuB and subsequent metal transfer
- …