496 research outputs found

    Seeing pain and pleasure on self and others: behavioural and psychophysiological reactivity in immersive virtual reality

    Get PDF
    Studies have explored behavioral and neural responses to the observation of pain in others. However, much less is known about how taking a physical perspective influences reactivity to the observation of others' pain and pleasure. To explore this issue we devised a novel paradigm in which 24 healthy participants immersed in a virtual reality scenario observed a virtual: needle penetrating (pain), caress (pleasure), or ball touching (neutral) the hand of an avatar seen from a first (1PP)- or a third (3PP)-person perspective. Subjective ratings and physiological responses [skin conductance responses (SCR) and heart rate (HR)] were collected in each trial. All participants reported strong feelings of ownership of the virtual hand only in 1PP. Subjective measures also showed that pain and pleasure were experienced as more salient than neutral. SCR analysis demonstrated higher reactivity in 1PP than in 3PP. Importantly, vicarious pain induced stronger responses with respect to the other conditions in both perspectives. HR analysis revealed equally lower activity during pain and pleasure with respect to neutral. SCR may reflect egocentric perspective, and HR may merely index general arousal. The results suggest that behavioral and physiological indexes of reactivity to seeing others' pain and pleasure were qualitatively similar in 1PP and 3PP. Our paradigm indicates that virtual reality can be used to study vicarious sensation of pain and pleasure without actually delivering any stimulus to participants' real body and to explore behavioral and physiological reactivity when they observe pain and pleasure from ego- and allocentric perspectives

    Embedding machine-readable proteins interactions data in scientific articles for easy access and retrieval

    Get PDF
    Extraction of protein-protein interactions data from scientific literature remains a hard, time- and resource-consuming task. This task would be greatly simplified by embedding in the source, i.e. research articles, a standardized, synthetic, machine-readable codification for protein-protein interactions data description, to make the identification and the retrieval of such very valuable information easier, faster, and more reliable than now.
We shortly discuss how this information can be easily encoded and embedded in research papers with the collaboration of authors and scientific publishers, and propose an online demonstrative tool that shows how to help and allow authors for the easy and fast conversion of such valuable biological data into an embeddable, accessible, computer-readable codification

    Reference values for railway sidings track geometry

    Get PDF
    Railway sidings are operated at speeds much lower than those used on national railway lines; a typical speed is 6 km/h. In establishing reference values for maintenance of railway infrastructure in terms of the geometry for such operating conditions, it is noted that both national and European regulations do not provide specific information regarding railway sidings. The overall objective of the research is, therefore, the definition of possible reference values for track geometry, based on those adopted by European rail networks (European and national standards), which can guarantee the appropriate security level for low speed operation typical of railway sidings connected to the national network. The basic principle in defining these values is the maximization of technical-economic efficiency and the maintenance of the acceptability of the risk associated to railway operation. The research results can therefore provide useful information about the cost-effective management of maintenance and safe operation for railway sidings. For this purpose, the approach was inspired to that of Regulation 402/2013, which defines at European level a common safety method for risk analysis. Quantification of probabilities and damages should be based on simulation models because the available statistics do not allow significant results to be inferred. However, the research sector has not yet produced a consolidated modelling. For these reasons, and since it is not possible to quantify probabilities reliably, the proposals resulting from this research are based on the identification of situations where it can be shown that the hazard probability remains unchanged. The approach used to formulate possible reference values valid outside of national networks (railway sidings) is based on an understanding of the underlying principles of the codes of good practice, on the formulation of hypotheses conform to the same principles, and the proposals about mitigative measures of risk associated to the use of different reference values, such as to keep the risk of the railway within the limits of acceptability, acting conservatively so as to keep unchanged, or reduce, the probability of hazardous events.The assessment parameters, object of the first phase of the research referred to in this work and used here as an example, are longitudinal level and alignment of railway track. In the case of vehicles running at low speed, the study was conducted by varying the magnitude of the reference values by using values that belong to external intervals with respect to those in accordance with European and national codes of good practice, examining the corresponding effects on the physical quantities related to safety. The effects of their variations on the wheel-rail interaction forces were studied using a simple dynamic model (with one degree of freedom) and a random generated excitation given by track defectiveness and the corresponding random response in terms of vertical and lateral contact forces (Q and Y)

    Transitory Inhibition of the left anterior intraparietal sulcus impairs joint actions: a continuous Theta-Burst stimulation study

    Get PDF
    Although temporal coordination is a hallmark of motor interactions, joint action (JA) partners do not simply synchronize; they rather dynamically adapt to each other to achieve a joint goal. We created a novel paradigm to tease apart the processes underlying synchronization and JA and tested the causal contribution of the left anterior intraparietal sulcus (aIPS) in these behaviors. Participants had to synchronize their congruent or incongruent movements with a virtual partner in two conditions: (i) being instructed on what specific action to perform, independently from what action the partner performed (synchronization), and (ii) being instructed to adapt online to the partner's action (JA). Offline noninvasive inhibitory brain stimulation (continuous theta-burst stimulation) over the left aIPS selectively modulated interpersonal synchrony in JA by boosting synchrony during congruent interactions and impairing it during incongruent ones, while leaving performance in the synchronization condition unaffected. These results suggest that the left aIPS plays a causal role in supporting online adaptation to a partner's action goal, whereas it is not necessarily engaged in social situations where the goal of the partner is irrelevant. This indicates that, during JAs, the integration of one's own and the partner's action goal is supported by aIPS

    Charting the NF-kB pathway interactome map

    Get PDF
    One of the phenomena observed in human aging is the progressive increase of a systemic inflammatory state, a condition referred to as “inflammaging”, negatively correlated with longevity. The five components of the Nuclear Factor kB (NF-kB) family are prominent mediators of inflammation. Several different signaling pathways activated by very diverse stimuli converge on NF-kB, resulting in a regulatory system characterized by high complexity. It is increasingly recognized that the number of components that impinges upon phenotypic outcomes of signal transduction pathways may be higher than those taken into consideration from canonical pathway representations. Scope of this analysis is to provide a wider, systemic picture of such intricate signaling system

    Limits and opportunities of risk analysis application in railway systems

    Get PDF
    Risk Analysis is a collection of methods widely used in many industrial sectors. In the transport sector it has been particularly used for air transport applications. The reasons for this wide use are well-known: risk analysis allows to approach the safety theme in a stochastic - rather than deterministic - way, it forces to break down the system in sub-components, last but not least it allows a comparison between solutions with different costs, introducing de facto an element of economic feasibility of the project alternatives in the safety field. Apart from the United Kingdom, in Europe the application of this tool in the railway sector is relatively recent. In particular Directive 2004/49/EC (the "railway safety directive") provides for compulsory risk assessment in relation to the activities of railway Infrastructure Managers (IMs) and of Railway Undertakings (RUs). Nevertheless the peculiarity of the railway system - in which human, procedural, environmental and technological components have a continuous interchange and in which human responsibilities and technological functions often overlap - induced the EC to allow wide margins of subjectivity in the interpretation of risk assessment. When enacting Commission Regulation (EC) No 352/2009 which further regulates this subject, a risk assessment is considered positive also if the IM or RU declare to take safety measures widely used in normal practice. The paper shows the results of a structured comparative analysis of the rail sector and other industrial sectors, which illustrate the difficulties, but also the opportunities, of a transfer towards the railway system of the risk analysis methods currently in use for the other systems

    Encoding the states of interacting proteins to facilitate biological pathways reconstruction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a systems biology perspective, protein-protein interactions (PPI) are encoded in machine-readable formats to avoid issues encountered in their retrieval for the reconstruction of comprehensive interaction maps and biological pathways. However, the information stored in electronic formats currently used doesn't allow a valid automatic reconstruction of biological pathways.</p> <p>Results</p> <p>We propose a logical model of PPI that takes into account the "state" of proteins before and after the interaction. This information is necessary for proper reconstruction of the pathway.</p> <p>Conclusions</p> <p>The adoption of the proposed model, which can be easily integrated into existing machine-readable formats used to store the PPI data, would facilitate the automatic or semi-automated reconstruction of biological pathways.</p> <p>Reviewers</p> <p>This article was reviewed by Dr. Wen-Yu Chung (nominated by Kateryna Makova), Dr. Carl Herrmann (nominated by Dr. Purificación López-García) and Dr. Arcady Mushegian.</p

    Charting the NF-kB pathway interactome map

    Full text link
    • …
    corecore