2,810 research outputs found

    Stops and MET: the shape of things to come

    Full text link
    LHC experiments have placed strong bounds on the production of supersymmetric colored particles (squarks and gluinos), under the assumption that all flavors of squarks are nearly degenerate. However, the current experimental constraints on stop squarks are much weaker, due to the smaller production cross section and difficult backgrounds. While light stops are motivated by naturalness arguments, it has been suggested that such particles become nearly impossible to detect near the limit where their mass is degenerate with the sum of the masses of their decay products. We show that this is not the case, and that searches based on missing transverse energy (MET) have significant reach for stop masses above 175 GeV, even in the degenerate limit. We consider direct pair production of stops, decaying to invisible LSPs and tops with either hadronic or semi-leptonic final states. Modest intrinsic differences in MET are magnified by boosted kinematics and by shape analyses of MET or suitably-chosen observables related to MET. For these observables we show that the distributions of the relevant backgrounds and signals are well-described by simple analytic functions, in the kinematic regime where signal is enhanced. Shape analyses of MET-related distributions will allow the LHC experiments to place significantly improved bounds on stop squarks, even in scenarios where the stop-LSP mass difference is degenerate with the top mass. Assuming 20/fb of luminosity at 8 TeV, we conservatively estimate that experiments can exclude or discover degenerate stops with mass as large as ~ 360 GeV and 560 GeV for massless LSPs.Comment: Version submitted to journal with improved analysis and small fixes, 27 pages, 11 figures, 2 table

    Photoluminescence of patterned arrays of vertically stacked InAs/GaAs quantum dots

    Full text link
    We report on photoluminescence measurements of vertically stacked InAs/GaAs quantum dots grown by molecular-beam epitaxy on focused ion beam patterned hole arrays with varying array spacing. Quantum dot emission at 1.24 eV was observed only on patterned regions, demonstrating preferential nucleation of optically-active dots at desired locations and below the critical thickness for dot formation at these growth conditions. Photoluminescence measurements as a function of varying focused ion beam irradiated hole spacing showed that the quantum dot emission intensity increased with decreasing array periodicity, consistent with increasing dot density

    Opto-electronic morphological processor

    Get PDF
    The opto-electronic morphological processor of the present invention is capable of receiving optical inputs and emitting optical outputs. The use of optics allows implementation of parallel input/output, thereby overcoming a major bottleneck in prior art image processing systems. The processor consists of three components, namely, detectors, morphological operators and modulators. The detectors and operators are fabricated on a silicon VLSI chip and implement the optical input and morphological operations. A layer of ferro-electric liquid crystals is integrated with a silicon chip to provide the optical modulation. The implementation of the image processing operators in electronics leads to a wide range of applications and the use of optical connections allows cascadability of these parallel opto-electronic image processing components and high speed operation. Such an opto-electronic morphological processor may be used as the pre-processing stage in an image recognition system. In one example disclosed herein, the optical input/optical output morphological processor of the invention is interfaced with a binary phase-only correlator to produce an image recognition system

    Dielectric multilayer waveguides for TE and TM mode matching

    Full text link
    We analyse theoretically for the first time to our knowledge the perfect phase matching of guided TE and TM modes with a multilayer waveguide composed of linear isotropic dielectric materials. Alongside strict investigation into dispersion relations for multilayer systems, we give an explicit qualitative explanation for the phenomenon of mode matching on the basis of the standard one-dimensional homogenization technique, and discuss the minimum number of layers and the refractive index profile for the proposed device scheme. Direct applications of the scheme include polarization-insensitive, intermodal dispersion-free planar propagation, efficient fibre-to-planar waveguide coupling and, potentially, mode filtering. As a self-sufficient result, we present compact analytical expressions for the mode dispersion in a finite, N-period, three-layer dielectric superlattice.Comment: 13 pages with figure

    Surface Acoustic Wave Measurements of Surface Cracks in Ceramics

    Get PDF
    We have extended our earlier investigation of scattering from surface cracks. In particular, we have studied the change in the reflection coefficient of a Rayleigh wave incident on a half-penny shaped surface crack along with the corresponding change in the acoustic crack size estimates as the cracked sample is stressed to fracture. We have examined in this manner both cracks in annealed samples and as-indented cracks. We have found that the fracture behavior for cracks in these two types of samples differ quite significantly, with the cracks in the annealed samples exhibiting a partial crack closure characteristic and the cracks in the as-indented samples displaying both crack closure and crack growth effects

    Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    Get PDF
    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models

    A scatter diagram for displaying the response of sensory neurons to sinusoidal stimulation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22336/1/0000781.pd
    corecore