13 research outputs found

    Refined Synthesis and Characterization of Controlled Diameter, Narrow Size Distribution Microparticles for Aerospace Research Applications

    Get PDF
    Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described

    W-Band Transmission MeasurementS and X-Band Dielectric Properties Measurements for a Radome Material Sample

    Get PDF
    This paper describes measurements which were performed on a sample of radome material in the Electromagnetic Properties Measurements Laboratory (EPML). The purpose of the measurements described in this paper was to determine the one-way transmission loss through the flat panel of radome material for a frequency range of 84 to 94 GHz, for varying incidence angles. The panel, which was manufactured by Norton Performance Plastics Corporation, was provided to the EPML by TRW. The size of the panel is 40 in x 36 in x 0.422 in and consists of a foam material with one side coated with a smooth white coating (this side will be referred to as the front side). The dielectric properties of the foam material from the inside of the panel were also determined at X-band (8.2-12.4 GHz). The W-band free space measurements are presented first, followed by the X-band dielectric properties measurements

    CHAP Enhances Versatility in Colloidal Probe Fabrication

    Get PDF
    A colloidal probe, comprising a colloidal particle attached to an atomic force microscope cantilever, is employed to measure directly interaction forces between the particle and a surface. It is possible to change or even destroy a particle while attaching it to a cantilever, thus limiting the types of systems to which the colloidal probe technique may be applied. Here we present the Controlled Heating and Alignment Platform (CHAP) for fabricating colloidal probes without altering the original characteristics of the attached particle. The CHAP applies heat directly to the atomic force microscope chip to rapidly and precisely control cantilever temperature. This minimizes particle heating and enables control over the viscosity of thermoplastic adhesive, to prevent it from contaminating the particle surface. 3D-printed components made the CHAP compatible with standard optical microscopes and streamlined the fabrication process while increasing the platforms versatility. Using the CHAP with a thermoplastic wax adhesive, colloidal probes were fabricated using polystyrene and silica particles between 0.7 and 40 m in diameter. We characterized the properties and interactions of the adhesive and particles, as well as the properties of the completed probes, to demonstrate the retention of particle features throughout fabrication. Pull-off tests with CHAPs probes measured adhesive force values in the expected ranges and demonstrated that particles were firmly attached to the cantilevers

    Mitigation of Polystyrene Microsphere Surface Contamination for Wind Tunnel Applications

    Get PDF
    Polystyrene latex (PSL) microspheres have been utilized as seed material for flow visualization in wind tunnels. However, PSL microspheres have been observed to strongly adhere to wind tunnel and model surfaces. Surface contamination on the cleaning screens that remove vorticity and provide laminar flow in the test section, is particularly problematic. Agglomeration of particles on these screens cause constriction of the airflow through the screen resulting in inconsistent airflow properties in the test section. The adhesion mechanism of PSL microspheres to wind tunnel screens and 316 stainless steel flat plates, were evaluated in a contamination apparatus where small sections of screen material were exposed to PSL-seeded airflow. Using a design of experiments (DOE) methodology airflow seeding parameters were changed to evaluate how these modifications affected the degree of surface contamination. The solution composition, comprised of ethanol and water, was determined to be the most significant factor in particle adhesion. Utilizing image analysis software, data were collected from the contaminated surfaces and incorporated to generate predictive particle contamination models. A relationship was identified between the solvent evaporation rate, and the morphology and magnitude of PSL contaminants on the test surfaces. This analysis can be extended to other solvent mixtures to provide insight into simultaneously improving wind tunnel testing capabilities while diminishing facility contamination

    Dielectric property measurements in the Electromagnetic Properties Measurement Laboratory

    Get PDF
    The capability to measure the dielectric properties of various materials has been developed in the Electromagnetic Properties Measurement Laboratory (EPML) of the Electromagnetics Research Branch (ERB). Two measurement techniques which have been implemented in the EPML to characterize materials are the dielectric probe and waveguide techniques. Several materials, including some for which the dielectric properties are well known, have been measured in an attempt to establish the capabilities of the EPML in determining dielectric properties. Brief descriptions of the two techniques are presented in this report, along with representative results obtained during these measurements

    Reduction of Wind Tunnel Contamination During Flow Visualization Experiments Using Polystyrene Microspheres

    Get PDF
    Evaluation of novel methods and materials for seeding tracer particles for particle image velocimetry (PIV) was carried out in the Basic Aerodynamic Research Tunnel (BART) at NASAs Langley Research Center (LaRC). Seeding of polystyrene latex microspheres (PSLs) from ethanol/water suspensions and from the dry state was carried out using custom built seeders. PIV data generated using the novel methods were found to be in general agreement with data collected using the current seeding methods. Techniques for assessing PSL fouling of wind tunnel surfaces were identified and refined. Initial results suggest that dry seeding PSLs may allow comparable data quality to wet seeding while reducing wind tunnel screen fouling. Results also indicate that further developments to the dry seeding system should focus on increasing single particle flux into the wind tunnel. Modifications to PSLs and seeding equipment to achieve this have been identified and are discussed

    Measuring Work of Adhesion of Polystyrene Microspheres

    Get PDF
    Particle adhesion is relevant in fields ranging from aerospace and energy to civil engineering and medicine. The functions of aerodynamic surfaces, heat exchangers, solar panels, ventilation systems, and blood vessels are affected by the buildup of particulates on their surfaces. Direct measurement of the adhesive force between a particle and a surface is key to understanding and mitigating particle fouling. Approaches such as the Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-Toporov (DMT) models offer a first approximation of the forces involved but do not account for non-idealities like roughness or plastic deformation. Experimental measurements of adhesive forces often deviate significantly from predictions. One approach to measure adhesion is the colloidal probe technique, which uses a particle attached to the tip of an atomic force microscope (AFM) cantilever. The particle is touched to a surface and then withdrawn and a pull-off force (FPO) determined by cantilever deflection. FPO can be used to estimate work of adhesion (Wa) and other properties from existing models. We describe a new method for producing colloidal probes using wax as an adhesive to attach micrometer-scale spheres to AFM tips. This method can be used with a range of particles and minimizes the potential for changes to the particle surface chemistry or geometry from exposure to heat, chemicals, radiation, or external forces. Particle attachment to AFM tips is robust and reversible, allowing old particles to be replaced with new ones in a few minutes. Pull-off measurements using polystyrene (PS) particles, pristine and modified with myristyltrimethylammonium bromide (14-TAB), were collected from various substrates to demonstrate the viability of this technique and investigate the impact of particle surface modification

    Further Insight into the Mechanism of Poly(styrene-co-methyl methacrylate) Microsphere Formation

    Get PDF
    Polymeric microspheres have been utilized in a broad range of applications ranging from chromatographic separation techniques to analysis of air flow over aerodynamic surfaces. The preparation of microspheres from many different polymer families has consequently been extensively studied using a variety of synthetic approaches. Although there are a variety of methods of synthesis for polymeric microspheres, free-radical initiated emulsion polymerization is one of the most common techniques. In this work, poly(styrene-co-methyl methacrylate) microspheres were synthesized via surfactant-free emulsion polymerization. The effect of comonomer composition and addition time on particle size distribution, particle formation, and particle morphology were investigated. Particles were characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM) to gain further insight into particle size and size distributions. Reaction kinetics were analyzed alongside of characterization results. A particle formation mechanism for poly(styrene-co-methyl methacrylate) microspheres was proposed based on characterization results and known reaction kinetics

    Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

    Get PDF
    Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs

    Characterization of Fluorescent Polystyrene Microspheres for Advanced Flow Diagnostics

    Get PDF
    Fluorescent dye-doped polystyrene latex microspheres (PSLs) are being developed for velocimetry and scalar measurements in variable property flows. Two organic dyes, Rhodamine B (RhB) and dichlorofluorescence (DCF), are examined to assess laser-induced fluorescence (LIF) properties for flow imaging applications and single-shot temperature measurements. A major interest in the current research is the application of safe dyes, thus DCF is of particular interest, while RhB is used as a benchmark. Success is demonstrated for single-point laser Doppler velocimetry (LDV) and also imaging fluorescence, excited via a continuous wave 2 W laser beam, for exposures down to 10 ms. In contrast, when exciting with a pulsed Nd:YAG laser at 200 mJ/pulse, no fluorescence was detected, even when integrating tens of pulses. We show that this is due to saturation of the LIF signal at relatively low excitation intensities, 4-5 orders of magnitude lower than the pulsed laser intensity. A two-band LIF technique is applied in a heated jet, indicating that the technique effectively removes interfering inputs such as particle diameter variation. Temperature measurement uncertainties are estimated based upon the variance measured for the two-band LIF intensity ratio and the achievable dye temperature sensitivity, indicating that particles developed to date may provide about +/-12.5 C precision, while future improvements in dye temperature sensitivity and signal quality may enable single-shot temperature measurements with sub-degree precision
    corecore