16 research outputs found

    Estimation of the OSNR penalty due to in-band crosstalk on the performance of virtual carrier-assisted metropolitan OFDM systems

    Get PDF
    The impact of the in-band crosstalk on the performance of virtual carrier (VC)-assisted direct detection (DD) multi-band orthogonal frequency division multiplexing (MB-OFDM) systems was numerically assessed via Monte-Carlo simulations, by means of a single interferer and 4-ary, 16-ary and 64-ary quadrature amplitude modulation (QAM) formats in the OFDM subcarriers. It was also investigated the influences of the virtual carrier-to-band power ratio (VBPR) and the virtual carrier-to-band gap (VBG) on the DD in-band crosstalk tolerance of the OFDM receiver. It was shown the modulation format order decrease enhances the tolerance to in-band crosstalk. When the VBG is the same for both interferer and selected signal, the interferer VBPR increase is seen to lead to lower optical signal-to-noise ratio (OSNR) penalties due to in-band crosstalk. Considering that the VCs frequencies of the selected and interferer OFDM signals are equal, the increase of the interferer VBG also gives rise to lower OSNR penalties. When the interferer and selected signals bands central frequencies are the same, the change of interferer VBG can attain 11 dB less tolerance to in-band crosstalk of the VC-assisted DD OFDM system. We also evaluate the error vector magnitude (EVM) accuracy of the in-band crosstalk tolerance of the DD OFDM receiver and our results show that the EVM estimations are inaccurate.info:eu-repo/semantics/acceptedVersio

    Optimization of optical limiting devices based on excited-state absorption

    No full text
    Limiting devices protect sensitive optical elements from laser-induced damage (LID). Passive devices use focusing optics to concentrate the light through a nonlinear optical (NLO) element (or elements) to reduce the limiting threshold. Unfortunately, these NLO elements may themselves undergo LID for high inputs, restricting the useful dynamic range (DR). Recently, efforts at optimizing this DR have focused on distributing the NLO material along the propagation path z of a focused beam, resulting in different portions of the device (in z) exhibiting NLO response at different inputs. For example, nonlinear absorbers closer to the lens, i.e., upstream, protect device elements downstream near the focal plane. This results in an undesirable increase in the threshold, although the lowest threshold is always obtained with the final element at focus. Thus there is a compromise between DR and threshold. This compromise is determined by the material. We concentrate on reverse saturable absorber (RSA) materials (molecules exhibiting larger excited-state than ground-state absorption). We look at both tandem devices and devices in which the concentration of the NLO material is allowed to spatially vary in z. These latter devices require solid-state hosts. The damage threshold of currently available solid-state hosts is too low to allow known RSA materials to reach their maximum absorption, which occurs when all molecules are in their excited state. This is demonstrated by approximate analytical methods as well as by a full numerical solution of the nonlinear wave propagation equation over extremely large distances in z (up to 103 Z0, where Z0 is the Rayleigh range of the focused beam). The numerical calculations, based on a one-dimensional fast Fourier transform, indicate that proper inclusion of diffraction reduces the effectiveness of reverse saturable absorption for limiting, sometimes by more than a factor of 10. Liquid-based devices have higher damage thresholds (damage occurs to the cuvette wall) and, thus, larger nonlinear absorption. However, RSA material in liquid hosts may suffer from larger thermal lensing. © 1997 Optical Society of America

    Two-beam coupling in liquids via stimulated Rayleigh-wing scattering

    No full text
    Transient energy transfer or two-beam coupling is demonstrated in CS 2 and other transparent Kerr liquids using frequency chirped, 17 picosecond (HW1/eM) 532 nm pulses with several polarization combinations. As the temporal delay between pulses in a standard pump-probe geometry is varied within the coherence time, the first pulse always loses energy while the second pulse gains this energy. Scattering from phase gratings can lead to coherent energy coupling only if the nonlinearity has a finite relaxation time. This two-beam coupling in Kerr media such as CS 2 is associated with stimulated Rayleigh-wing scattering (SRWS). The frequency difference needed for beam coupling can be achieved with chirped pulses or with short pulses in nonlinear materials if irradiance dependent phase shifts are being developed during the laser pulse due to self and cross-phase modulation. Here we consider the interaction between linearly chirped pulses obtained from our modelocked, Q-switched Nd:YAG laser. This leads to an energy transfer linearly proportional to irradiance, so that the signal can be observed at irradiances lower than those needed for induced phased modulation. The measurements are performed on CS 2 but the results are valid for any Kerr liquid that has a nonlinear index of refraction with a relaxation time on the order of the laser pulse width. We demonstrate that the interaction follows the polarization dependence of SRWS. The only parameters needed for the theoretical fittings are the nonlinear index n 2, its relaxation time and the linear chirp of the laser pulse. The first two are well known for CS 2 and the laser chirp is independently measured using first and second order autocorrelations

    Liquid-based multicell optical limiter

    No full text
    We describe several methods for optimizing optical limiters, including a modification to existing geometries called the stepped limiter. We show that a stepped limiter may have a performance close to that of a fully optimized limiter with a graded molecular density. Given the difficulty in making a graded molecular density, the stepped limiter may be an attractive approach toward making practical devices. We also discuss the importance of damage threshold of the nonlinear limiting material on the limiter design and performance. Liquids have high damage thresholds and for this reason we may use tandem limiting geometries for devices based on nonlinear absorber molecules in liquid solutions. With currently available materials, this is still the best approach. Our experimental results on a tandem limiter based on Zn:tetra(ρ-methoxyphenyl) tetrabenzporphyrin show the best limiting performance to date

    Introduction of Spectrally and Spatially Flexible Optical Networks

    No full text

    Introduction of spectrally and spatially flexible optical networks

    No full text
    corecore