1 research outputs found

    Secure voting in the cloud using homomorphic encryption and mobile agents

    Get PDF
    While governments are transitioning to the cloud to leverage efficiency, transparency and accessibility advantages, public opinion - the backbone of democracy - is being left behind. Statistics show that traditional paper voting is failing to reach the technological-savvy generation, with voter turnout decreasing every election for many first-world countries. Remote electronic voting is a possible solution facilitator to this problem, but it still faces several security, privacy and accountability concerns. This paper introduces a practical application of partially homomorphic encryption to help address these challenges. We describe a cloud-based mobile electronic voting scheme, evaluating its security against a list of requirements, and benchmarking performance on the cloud and mobile devices. In order to protect voter privacy, we propose moving away from a public bulletin board so that no individual cipher votes are saved, while still allowing vote verification. As the majority of the security threats faced by electronic voting are from the underlying system, we also introduce the novel concept of using a dedicated hardware server for homomorphic tallying and decryption
    corecore