
Secure Voting in the Cloud using Homomorphic
Encryption and Mobile Agents

Mark A. Will∗, Brandon Nicholson†, Marc Tiehuis† and Ryan K L Ko∗
Cyber Security Lab

The University of Waikato
Hamilton, New Zealand

Email: ∗{willm, ryan}@waikato.ac.nz, †{bjn11, mat32}@students.waikato.ac.nz

Abstract—While governments are transitioning to the cloud
to leverage efficiency, transparency and accessibility advantages,
public opinion - the backbone of democracy - is being left behind.
Statistics show that traditional paper voting is failing to reach
the technological-savvy generation, with voter turnout decreasing
every election for many first-world countries. Remote electronic
voting is a possible solution facilitator to this problem, but it still
faces several security, privacy and accountability concerns. This
paper introduces a practical application of partially homomor-
phic encryption to help address these challenges. We describe
a cloud-based mobile electronic voting scheme, evaluating its
security against a list of requirements, and benchmarking per-
formance on the cloud and mobile devices. In order to protect
voter privacy, we propose moving away from a public bulletin
board so that no individual cipher votes are saved, while still
allowing vote verification. As the majority of the security threats
faced by electronic voting are from the underlying system, we
also introduce the novel concept of using a dedicated hardware
server for homomorphic tallying and decryption.

Index Terms—electronic voting; e-voting; mobile voting; homo-
morphic encryption; hardware model; cloud computing; privacy;

I. INTRODUCTION

In New Zealand, the voter turnout at General Elections has
been declining, as shown in Figure 1 [1]. This same trend has
been seen in many other countries [2][3]. A survey in 2011,
showed that 37% of non-voters either had other commitments
or could not be bothered voting [4]. Governments have been
looking at fixing this issue of modern democracy with remote
e-voting (electronic voting) in the cloud [5]. Allowing votes
to be cast at home over the internet with a personal device
or mobile agent would make the process of voting simpler.
The concept is easy to implement, but very difficult to secure.
Estonia is currently using e-voting nation wide, even though
it is not entirely secure [6][7].

Developing an e-voting scheme which is 100% secure
against all attack vectors is incredibly difficult. But it does
need to be as secure as current paper voting techniques. To
protect voter privacy, votes must be encrypted so that no entity
has knowledge of how someone voted. This is a perfect use
case for homomorphic encryption [8], in particular partial
homomorphic encryption. Because the result of a ballot is
the sum of all votes for the available choices or candidates,
additional homomorphic encryption is required. We focus on
the Paillier [9] and Damgård—Jurik [10] Cryptosystems.

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

20
14

70

80

90

100

Year
Tu

rn
ou

t
(%

)
Fig. 1: New Zealand General Election Turnout.

In this paper we provide a list of requirements we believe
should be used for evaluating any remote e-voting scheme.
We propose a new technique for users to verify that their
vote has been cast correctly, without the use of a public
bulletin board. This is important because individual cipher
votes should not be saved, otherwise votes can be revealed.
We then analyse the performance of an e-voting scheme in the
cloud using mobile agents. To improve the overall security
of the system, we introduce the idea of using a hardware
based tally and decryption server. We then evaluate our scheme
before discussing current challenges and future work.

II. RELATED WORK

A. Helios Voting Scheme

Helios is a web-based, open-audit voting system that
was first proposed in 2008 [11]. The cryptography for
the voting scheme itself is based on the work by Be-
naloh [12] and the Sako-Kilian mixnet [13]. To provide
vote verification, Helios, as well as many other voting
schemes [14][15][16][17][18][19], make use of a publicly
visible bulletin board where each cipher vote is displayed,
making it easier to trace back to the voter. The problem with
using a bulletin board is that the organisation or personnel
with access to the private key can view how individuals
voted. Therefore this does not guarantee voter privacy. In
order to verify the votes have been computed correctly, another
authority needs to compute the result tally. This requires the
private key, giving more entities access to individual vote
details.



B. Self-Enforcing Voting Scheme

Hao et. al. defined “self-enforcing electronic voting” as a
voting system that does not depend on any external tallying
authorities [20]. Hence the system is self-tallying. This kind
of voting scheme has a great advantage over more traditional
schemes, as the trustworthiness of the system tends to increase
when the human element is removed from the tallying process.
The feasibility of such a system has been shown by Hao and
Kreeger [14]. However, this scheme still relies on the use of
public bulletin boards, which have their own vulnerabilities as
mentioned above.

III. COUNTRY E-VOTING TRIALS/IMPLEMENTATIONS

A. United Kingdom

The United Kingdom have been looking to utilise e-voting
technology during general elections for many years. Their aim
was to reduce cost, and increase voter turnout. At one stage
they planned to have e-voting available after the 2005 general
election. However the idea of introducing e-voting has been
controversial, largely due to the negative publicity caused by
electoral fraud incidents involving postal voting [2].

Despite this controversy, they continued to work towards
their goal, conducting trials on a number of different e-voting
systems during binding local elections in 2002/3 and 2007.
However, only the 2007 trials included remote e-voting. In
2008, the United Kingdom concluded that the trials had not
been overly successful. They have since suspended all e-voting
trials indefinitely [21].

B. Switzerland

Switzerland has conducted a number of online voting trials
in the cantons of Geneva and Zurich since 2004. The context of
these trials has varied from student elections at the University
of Zurich, to community-level referendums, all the way to
cantonal and federal ballots. All ballots cast online in the trials
were included along with the paper ballots as part of a binding
result [3].

The systems used by Geneva and Zurich are similar. They
mail out voting documentation prior to the election, which
includes an e-voting card that lists a unique identification and
PIN number. There have been no reports of security failures or
manipulations of the e-voting systems during any of the trials.
There have not yet been any large-scale trials conducted, so it
is likely that flaws exist [3].

Therefore the trials so far have been considered a relative
success. No noticeable technological problems have occurred,
and the percentage of voters who cast their vote online has
generally been high. However there is doubt that the use of
e-voting systems have actually increased voter turnout, which
like the United Kingdom, was one of their main goals [3]. At
present, there appears to be no plans to trial online voting at
a federal level.

C. Norway

In 2009, the Norwegian Government decided to start work-
ing towards E-Valg 2011, an e-voting pilot project for binding
regional elections and local referendums in 2011. The key
motivations for this system were to speed up the counting
process, increase participation, and reduce the cost of running
the elections and referendums [22].

The voter authentication mechanism that was utilised is
MinID, a two-level authentication service that is used for
various Norwegian government services. Using this system,
the voter provides their credentials to the MinID server. Then
the server generates a one-time password and sends it to
the voter via SMS (Short Message Service). Once the voter
enters this code, the authentication process is complete, and
the voting process begins. After the vote has been cast, a
verification code is generated by the voting server, and this is
also sent to the voter by SMS. This gives the voter assurance
that their vote has been cast as intended. The system may seem
secure, however it relies heavily upon the assumption that the
SMS channel is secure. This is not necessarily the case, as
demonstrated by Koenig et. al. [23].

D. United States of America

Many states utilise some form of Internet voting, however
the majority do not run trials that allow researchers to test
the systems security. In 2010, Washington D.C. developed an
Internet voting pilot system, intended to allow absentee voters
to cast their vote via an online portal. Before using this system
in the general election, they decided to launch a mock election,
where they invited researchers to try and attack the system.

Wolchok et. al., from the University of Michigan, ap-
proached the system from an attackers perspective (blackbox
testing), by using only information available in the public
domain. The test trials were planned to run over four days.
However, it took less than 48 hours for Wolchok et. al. to
take control of the election server, successfully changing every
vote. They remained undetected, until deliberately leaving
behind a clue for the conducting authority. Following this trial,
the project was discontinued [24].

E. Canada

Canada is one of the leading countries in regards to Internet
voting, offering more instances of online ballots in binding
elections than any other country or jurisdiction [25]. For
example, during the 2010 local elections in Ontario, more than
800,000 voters in 44 municipalities across the province were
provided with the option of casting their ballot online. This is
only one of many occasions on which Internet voting has been
made available in Canada. Since 2003, when the concept was
first introduced, about 60 municipalities across two provinces
have successfully deployed Internet voting systems, intending
to use them permanently [25].

At this stage there have been no Internet voting trials
confirmed for provincial nor federal level elections, although
Canadas national election agency has indicated that they
wish to start looking at introducing Internet voting at the



federal election some time after 2015, pending parliamentary
approval [25]. The idea of allowing the option of Internet
voting during elections is also widely supported by the public,
as indicated by a national survey conducted in 2011 which
showed that about 85% of those surveyed were in favour of
the idea [25].

Markham is the largest municipality in Ontario that offers
Internet voting. It has done so during three consecutive binding
elections in 2003, 2006 and 2010. As such it is one of the
best examples to discuss. Prior to the election, eligible voters
are sent a notification card by mail, which includes a unique,
randomly generated PIN. They then register online, providing
their PIN and date-of-birth as means of authentication. After
choosing a passcode, the registration is complete. Finally, they
will be sent out a second card by registered mail, which
contains a new PIN. Once the Internet voting period (which
usually goes for 5-7 days leading up to the election) begins,
they can vote easily by providing their second PIN and the
passcode that they chose during registration [25]. We were
unable to find any studies relating to the security of these
trials.

F. Estonia

Estonia first implemented Internet voting for their 2005
local office elections. They were the first country to introduce
Internet voting on a nation scale. Since then, e-voting has been
used for all local, regional and parliamentary elections [7].

When a person registers to vote in Estonia, they are issued
with a smart identity (ID) card that contains a legal digital
signature. This makes the voting process simple. Once the
election begins, they can insert their smart ID card into a card
reader attached to any computer. The voting application will
then use this as a means of authentication [6][7].

A voter may cast their vote online at anytime during the
voting period. Their vote can be changed as many times as they
wish before the online voting period ends, which is usually
the day before the election. On election day, if they decide to
change their vote, they may also cast a paper vote. When the
votes are tallied, an online vote will only count if they did not
cast a paper vote [6].

There have been increasing concerns regarding the security
of this system. But it was not until 2014 that Springall
et al. from the University of Michigan conducted the first
independent security analysis on the Estonia system. The
evaluation comprised of both observations made throughout
an election, and experimentation on the system itself. Their
findings showed that although the system may have been
secure and innovative when it was designed in the early 2000s,
it was now fundamentally flawed. They were able to initiate
client-side attacks that could silently steal votes from the
voters computers. Server-side attacks were also discovered that
could insert malware on the election servers, of which the
implications could be disastrous. The team recommended that
Estonia discontinue their e-voting system until there have been
great advances in computer security, as they do not believe it
can be made safe in today’s environment [7].

IV. CLOUD E-VOTING SYSTEM REQUIREMENTS

We propose a coherent list of requirements
that any proposed remote e-voting system should
meet [26][27][28][29][30].

1) Eligibility: Only eligible voters are able to cast a vote.
2) Unreusability: Each voter may cast exactly one valid

vote per ballot. Every ballot is distinct from the others
and cannot be used more than once.

3) Untraceability: No ballot can be traced back to a
specific voter by anyone else, including any authority.

4) Verifiability: Voters must be confident that their vote
has been cast as intended.

5) Tally Correctness: All ballots are counted correctly.
The total amount of all valid votes must not be more than
the number of all registered voters. The tally process
should be distributed across trusted authorities.

6) Uncoerceability: A voter cannot prove to anyone else
how they cast their ballot. A briber/coercer cannot link
any specific ballot to its owner.

7) Auditability: A voter may cast an invalid vote for the
purposes of auditing.

8) Accessibility: Voters are not restricted by physical lo-
cation from which they can cast their votes. Voters
should not require special devices to enable them to
vote. Voters should not be required to learn any new
skills. Voters should be able to cast their ballots quickly
without hassle.

9) Fairness: No one can know the intermediate results of
the ballot.

10) Soundness: Malicious persons cannot figure out the
intention of an eligible voter by intercepting any data
transmitted between the voter and the voting authority.
No voter can disturb or interrupt the voting process, such
that they affect the result of the voting.

11) Integrity: The voting authority cannot control the elec-
tion result by some malicious actions.

12) Completeness: All eligible voters are accepted to cast
their vote and all ballots are counted correctly.

V. HOMOMORPHIC SCHEMES

The result of a ballot is usually the sum of all votes cast
for something (e.g. candidate). Therefore the only operation
required to calculate the result is addition. Instead of using
fully homomorphic encryption, we can use a partially homo-
morphic scheme which supports addition. We say “no”= 0
and “yes”= 1 as these schemes require integer values [9][10].
For a scheme to support this simple e-voting scenario, it must
meet the following requirements:

1) Concealing: Given any number of cipher values, it is
infeasible to determine which value (“no” or “yes”) they
represent.

2) Homomorphic-Tallying: Given all the cipher values
from a ballot, it is easy for anyone to computer the “yes”
tally homomorphically.

3) Verification: A voter must be able to verify that their
vote has been counted as intended towards the final tally.



4) Multiple Candidates: Ballots with multiple choices can
be cast either by a single vote where each choice gets
a bit range, or separate votes. Verification is required to
guarantee x votes per voter.

A. Paillier Cryptosystem

Proposed in 1999 by Pascal Paillier [9], the Paillier cryp-
tosystem is based on the problem that computing nth residue
classes is computationally intensive. The encryption algorithm
uses the public key pk(n, g), and raises g to the unencrypted
vote value m, multiplied by a random value r to the power
of n, giving E(m) = gmrn mod n2. Therefore multiplying
two cipher values, gives c1c2 = g(m1+m2)rn1 r

n
2 mod n2, giv-

ing a homomorphic addition operation. The limitation with this
scheme is that we have to stay within modulus n2. However
given that the user should know the security parameters (i.e.
number of voters), the keys can be generated accordingly.

B. Damgård—Jurik Cryptosystem

A generalisation of the Paillier Cryptosystem, the
Damgård—Jurik Cryptosystem [10], allows the block length
to be changed after the creation of the public keys. Damgård
and Jurik also propose a threshold variant, which enables the
secret key to be shared with x servers. However, each server
cannot decrypt the cipher value alone. A large subset of the
servers are required to work together to decrypt cipher values.
The key property here is that if one server becomes compro-
mised, by trying all combinations of servers for decryption,
the compromised server can easily be flagged. Because the
computation is distributed, each voter must send the cipher
vote to each server. A zero-knowledge proof is also given
where a prover can verify that a cipher value is in an allowed
set of plaintext values. This is important because it can stop
malicious voters from casting votes higher than 1. We use the
Paillier Cryptosystem, but utilise the extra security provided
with the distributed computation, and zero-knowledge proofs
from the Damgård—Jurik Cryptosystem. This makes it more
applicable to an e-voting system.

C. Partial Decryption

During key generation, the private key can be split into
portions using concepts taken from Shamir’s Secret Sharing
algorithm. Each server is given an evaluation of a polynomial
P (x) which represents the private key. The i’th server gets a
value si = P (i), along with a verification value vi = v∆si

mod n2, where ∆ = l!, and v is a cyclic generator of squares
in Z∗n2 . Each si is secret to each server.

In order to decrypt a given value, each decryption server must
calculate its share as ci = c2∆si , where c is the ciphertext
to decrypt. A zero-knowledge proof is constructed with each
share to verify that it is indeed the case that the i’th server
has computed their share correctly.

To combine the shares, we require w (chosen during key
generation) or more to be correct in order to retrieve

a successful decryption. We take a w subsets from
S = s0, ...sl−1, and combine the elements of each in
order to determine the correct combination.

c′ =
∏
i∈S

c
2λS

i
i mod n2 where λSi = ∆

∏
i′<w
i′ 6=i

i′ + 1

i′ − i

The result is of the form c′ = 4∆2d so c′ = (n + 1)4∆2m

mod n2 with m the plaintext. It follows that applying
L(x) = x−1

n mod n to c′, and then multiplying by (4∆2)−1

results in retrieval of the desired plaintext m.

Note that in order to combine shares, it is only required to
have knowledge of the public key. Therefore anyone can
combine shares in order to decrypt the result, where only a
small subset is required for a correct decryption.

D. Vote Proof

We wish to show that for a given c = E(m, r) = (n+1)mrn

mod n2, m is encrypted by a value r. This implies that
c(n + 1)−m mod n2 = rn mod n2. In other words, if we
can show that c(n+ 1)−m mod n2 is an encryption of zero,
a verifier should be convinced. If we have knowledge of the
random value r which encrypts c, then we can always find a
corresponding encryption of 0 for an n’th power as follows.
c = (n+ 1)knrn modn2 = ((n+ 1)kr)n modn2, k ∈ Z

We then state a protocol to determine whether a given cipher-
text u is an n’th power.

Proof of an n’th power:
Let P be a voter who wishes for their vote c to be verified by
V . Let u = E(0, v) be the vote containing P ’s vote. We then
construct a proof for u as follows:

1) P chooses r at random in Z∗n and calculates a as E(0, r)
2) By the Fiat-Shamir heuristic let h be a fixed hash

function, P then calculates a value e = h(a, ID(P ))
where ID(P ) is the unique id of P in this system.

3) Taking e as the challenge from V , P sends a, u and
z = rve mod n to V .

4) V checks that u, a, z are co-prime to n and that
E(0, z) = aue mod n2 and if so, accepts u as being
an encryption of some n’th power.

Using this protocol, we can then construct a proof which de-
termines if an encryption contains one of two values, without
disclosing which value it is. Given a vote c, and two possible
values m1 and m2, compute u1 = c(n+ 1)−m1 mod n2 and
u2 = c(n + 1)−m2 mod n2. The prover is then required to
show that one of u1 or u2 encrypt 0.

Proof of 1-out-of-2 n’th powers:
For this protocol, let k2 = k/2 or k2 = 160, where k is the
bit size of the modulus n. Let P be a voter who wishes for
their vote to be verified by V . Let u1 and u2 be constructed as
mentioned prior, and determine the value v1 for which u1 =
E(0, v1).



Alice

...

Environment I

Environment II

Environment x

SSL(C)

SSL(C)

SSL(C)

Fig. 2: Distributed Voting Model for the Cloud.

1) P constructs a proof of an n’th power on u2, obtaining
the values a2, e2, z2. P then chooses r1 at random in
Z∗n and computes a1 = E(0, r1).

2) By the Fiat-Shamir heuristic let h be a fixed hash
function, P then calculates the value e = h(a1, ID(P ))
where ID(P ) is the unique id of P in the system.

3) P computes e1 = e − e2 mod 2k2 and z1 = r1v
e1
1

mod n and sends a1, e1, z1, a2, e2, z2 to V .
4) V checks that e = e1 + e1 mod 2k2 , E(0, z1) =

a1u
e1
1 mod n2, E(0, z1) = a2u

e2
2 mod n2 and that

u1, a1, z1, u2, a2, z2 are co-prime to n and if so, accepts
u1 as being 1-of-2 values, m1, or m2.

We can use this protocol in our e-voting scheme to ensure
that votes placed either count as a “yes”, or as a “no”, without
exception.

VI. SYSTEM MODEL

A. Key Generation

Currently key generation has to be performed by a single
entity, which must be trusted to compute and distribute the
shared keys to each server in the cloud. It is possible to
compute the keys such that no single entity has knowledge
of it [31], however this was out of scope for this paper.

B. Voting

Using a mobile agent, a user can vote by sending their
cipher vote to each tally/decryption server used for the ballot
as shown in Figure 2. Each connection between the user
and a server should be encrypted over the Secure Sock-
ets Layer (SSL) protocol. The tally and partial decryption
servers should be spread across many organisations and re-
gions. This reduces the probability of them all being com-
promised. However before a user can vote, they must be
authorised/authenticated with each voting server. Depending
on the ballots required security affects the level of authorised
required. For example a simple ballot for a class president may

User Server

Userpr, Userpk = GenerateKey()

Save(Userpk, Userpr)

K = E({ID,Userpr}, Serverpk)

SSL(K)

{ID,Userpr} = D(K,Serverpr)

S = E(Userpr, Storagepk)

Store(ID, S)

H = Hash(Userpr + ID)

SSL(H)

Hash(Userpr + ID) == H

Fig. 3: User Submitting Verification Sequence

only require a username and password. This could be made
more secure with a confirmation string sent to the voter’s email
address, which they must include with their ID when voting.
However for a government election, this is not secure enough.

A solution that could be implemented is where every user
has their own encryption key, which could be retrieved from
any government agent (e.g. post or tax office). Therefore you
must have proof of who you are before getting your unique
key. During the ballot, all the servers have the decryptions keys
for each voter. When voting, the cipher vote, vote proof and
ID are encrypted with the voter’s unique encryption key. This
is then sent to the servers along with their ID in plain-text.
To verify a voter, the server decrypts the cipher text using the
user’s decryption key retrieved by their ID. If the plain-text
ID and cipher ID match, then the cipher vote and proof can
be checked before the vote is added.

This however has an issue that at some point in time, the
encryption and decryption keys for all users are visible. If
a malicious user gains access to this data, the ballot could
be compromised. Therefore only one key can be outside the
user’s device at all times. Instead of the government server
creating all the verification keys, the users can generate them
on their mobile device. They then encrypt the decryption key
with each of the voting servers public keys (possibly at the
government agent). The keys can then be transferred to the
voting servers. Figure 3 shows a time sequence diagram for
a user submitting their verification key. The same or different
keys can be applied to every server. This could be enforced
so that it must be done at a government agent, where the
user can have their ID verified, the public keys of the servers
can be checked, and a policy can be in place so that only
government agents can access the voting servers during pre-
voting. However this adds extra overhead to the voters. At any
time prior to or during the ballot, a user can request a hash of
their decryption key plus ID to verify it is stored correctly.

The IDs should be randomly generated at a set time before
the ballot. Leading up to this point, voters are able to register
if they have not already. Once the IDs are generated, the voter
pool should be fixed. The list of IDs can then be sent to all
the tally servers and the number of enrolled voters can be
made public. After the ballot has finished, each tally server



can make the total number of voters and the number that
actually voted available to the public. Publishing the number
of enrolled voters twice helps prevent a fake user being added
to the tally servers. This does not stop a fake user being added
to the initial list of enrolled voters by a malicious employee.
However this is an issue with current paper voting techniques
as well.

There should not be a direct link between the users iden-
tity (e.g. name) and the ID they receive. However there does
need to be a way to verify a user has the right to vote with the
ID they received. Therefore the ID should be salted and hashed
before being linked to the user. This allows a user to call/visit
the authorities if they cannot vote, and verify that they are the
owner of the ID. This also makes it much more challenging
for a malicious employee to view all the IDs and who they
are assigned too. This is important because if there is a high
probability that an enrolled voter is not going to vote (e.g. they
have passed away or left the country), it stops a corrupt insider
from voting on their behalf (identity theft). Before the ID is
hashed and therefore “lost”, it must be printed then covered
with scratch off ink, and sealed in an envelope with the voters
postal address autonomously. At no point should the ID be
visible to a human eye until the envelope is opened and the
ink is removed. Sending out voting information via post has
been successful in Switzerland’s voting implementation [3].
For extra protection, there should be encryption between the
printer and generation server, such that the ID and address are
never stored in the printers memory in plain-text or visible to
network sniffing.

In order for the server to trust the vote, a zero-knowledge
proof is also required so that the server knows the vote is
within the set {0, 1}. Without a proof, the voter can submit
values > 1, making the ballot corrupt. If a ballot consists
of multiple candidates/options, then the proof can be used
to check that the sum of the votes equals 1 (proof requires
access to all r values which the client has). For example if
the ballot has three candidates, a voter can only choose one.
Then the homomorphic addition of the three cipher votes must
also be in the set {0, 1}. If it is outside this set, then the voter
voted for more than one candidate. The voter would then send
the 3 cipher votes with their proofs, along with a cipher vote
consisting of the sum of the votes and a proof. This totals
4 cipher votes and 4 proofs. The server can check all proofs,
and compute the homomorphic addition of the 3 votes to check
that the 4th cipher vote is correct.

The final voting sequence is given in Figure 4. Note that a
user can only vote once, and this must be enforced in the tally
server. This helps stop/identify if a malicious entity has voted
for someone on their behalf. Either the user will vote and get
an error because “they” have already voted, or the malicious
entity will get an error if the user voted first. In the case
where the user gets the error, they can contact the authorities
to report the corrupt vote. A limitation of this design is that a
corrupt vote cannot be removed since individual votes are not
stored. Therefore there needs to be a policy in place such that
if the number of corrupt votes reaches a certain threshold, or

User Server

Cv = E(V ote, ballotpk)

Cp = Proof(Cv, ballotpk)

Cu = E({ID,Cv, Cp}, Userpk)

C = E({ID,Cu}, Serverpk)

SSL(C)

{ID1, Cu} = D(C, Serverpr)

Userpr = D(Fetch(ID1), Storagepr)

{ID2, Cv, Cp} = D(Cu, Userpr)

ID1 == ID2

isV alid(Cp)

AddV ote(Cv)

HasV oted(ID1)

AddV oteToGroup(Cv, ID1)

H = Hash(Cv + ID1)
SSL(H)

Hash(Cv + ID) == H

Save(Cv)

Fig. 4: User Voting Sequence

the difference between “yes” and “no” is under the number of
corrupt votes, then the ballot is made invalid. However there
is another solution to this problem. In Section VI-D we will
cover splitting the voters into groups, where the group’s tally
is saved. Therefore only the voters in the group containing the
corrupt vote can be asked to revote. How the voters are asked
to revote is an open problem.

If a user does not wish to use the e-voting system, they
can use paper voting. But their ID should be recorded as
voted via paper. The electronic vote must be taken if both
techniques were used, because the tally servers do not record
each individual vote. Note that by allowing an electronic vote
to be removed, the vote’s value is revealed because of the
difference in the final tally.

C. Tally Verification

The threshold variant of the Damgård—Jurik Cryptosystem
which we adapted only requires a subset of all servers to
provide a full decryption. Therefore to verify the final tally,
anyone can request all the partial decryptions of the tally, and
try all combinations. If none of the servers were compromised,
then all the combinations will produce the same tally. However
if a server was compromised, then not all the tallies will be the
same value. With only one server compromised, it is easy to
identify. But as the number of compromised servers increases,
so does the difficulty of finding the correct tally. Therefore
there must be a security parameter of the ballot which states
at what point a revote is required.

D. Vote Verification

As discussed in Section II-A, using a public bulletin board
does not guarantee individuals full vote privacy. Therefore we
will propose a different technique which gives more protection
to users’ privacy, and gives voters the ability to check if their
vote has been included in the tally.

Using the Paillier cryptosystem, in order for a voter to verify
that their vote has been counted using only the result cipher



Final Tally:
C6 = C4 × C5 mod n2

M6 = C4 × C5

Group 2-3:
C5 = C2 × C3 mod n2

M5 = C2 × C3

Group 0-1:
C4 = C0 × C1 mod n2

M4 = C0 × C1

Group 3:
C3 =

∏4λ
n=3λ(V oten mod n2)

M3 =
∏4λ
n=3λ(V oten)

Group 2:
C2 =

∏3λ
n=2λ(V oten mod n2)

M2 =
∏3λ
n=2λ(V oten)

Group 1:
C1 =

∏2λ
n=λ(V oten mod n2)

M1 =
∏2λ
n=λ(V oten)

Group 0:
C0 =

∏λ
n=0(V oten mod n2)

M0 =
∏λ
n=0(V oten)

Fig. 5: Verifying a Paillier Based Voting Scheme

value is difficult. This is because it is within modulo n2, which
means checking that the user’s cipher vote was part of the
multiplication process is hard. Ideally the user would be able
to save their cipher value. Then, after the voting is complete,
multiply the result cipher value by the modular inverse of their
cipher value. This would be equivalent to removing their vote
from the tally. Note in this case after the voting anyone can
decrypt the result as the decryption keys can be made public.
In practice this is very challenging, because each cipher value
would have to be a unique co-prime of n2 in order to have a
modular inverse.

A simpler solution is to combine the voters into groups of
size λ. By combining votes, it is not possible to know how an
individual voted. The user’s cipher vote is homomorphically
added to the group’s tally. However we keep two values, one
within modulo n2, and another which is the result of the
multiplication. For example, if λ = 100 and our key was
2048-bits, the modulo value would stay 2048-bits, but the
other value would grow to 2048 × 100-bits worst case. We
can then combine λ groups to form a tree. After the ballot is
complete, each voter can verify by retrieving the non-modulo
value from their group by dividing out their cipher value to
check the difference in the tally. They can verify up to the final
result by retrieving the next level of groups. Groups should
be randomly assigned, because if they are assigned based on
region, age or gender, there is a higher probability that all
voters in the group will submit the same vote.

Figure 5 shows an example of the voting groups forming the
verification tree. If a user from Group 1 wants to verify that
their vote was counted once the voting has finished, they first
request C1 and M1, along with the private key. We define
C1 as the groups sum value inside modulo n2, and define
M1 as the groups sum value without the modulus operation.
They then remove their vote Md = M1/Cv and check that
Dec(M1) − Dec(Md) = Dec(Cv). To verify C1, just check
that M1 mod n2 = C1. Once the user knows that Group 1
contains their vote, they can check Group 0-1. They request C4

and M4 then check that Dec(M4)−Dec(M4/C1) = Dec(C1)
and M4 mod n2 = C4. The user could also request C0 and
M0 to check the calculations for C4, however it is assumed a
user of Group 0 would verify this. These steps can be repeated
until the final tally is verified to contain the user’s vote.

With our proposed verification scheme, it is possible for
a server to store individual votes as well as including them
in a group. Then when the decryption key is made public,
it is possible to map each vote to the voter. However this
explanation has been using the Paillier Cryptosystem, when
our System Model and Implementation use the threshold
variant of the Damgård—Jurik Cryptosystem. We can use the
same principle of vote verification, where each server keeps
a Mx and Cx value for each group. Note that the groups of
voters needs to be predefined so that each server uses the same
mapping before voting begins.

To protect against malicious servers, the full decryption key
cannot be made public. Because each server contains part of
the decryption key, the user can request Cx, Mx and a part
decryption of Cx. The user can then divide out their cipher
vote giving Md = Mx/Cv , then apply the modulus, Cd = Md

mod n2 (or ns+1). To decrypt this value, the user sends Cd to
each server and asks for a partial decryption. By combining
all the partial decryptions of Cx, the vote tally for the group
is given. Combining all the partial decryptions of Cd, should
give the group tally minus the vote. To stop capturing of the
partial decrypted values (e.g. network sniffing or man-in-the-
middle attacks), the user sends two Cd values, one real and
the other a dummy. The first is where the vote is “no”, and the
second where the vote is “yes”. Therefore the user can verify
their vote, but any entity capturing the partial decryptions does
not know which is the user’s vote. Note that when a user
sends back the Cd values, they must be authenticated, and
have a limitation on verifications to help prevent denial-of-
service attacks. Also, given a small group size, the probability
of a voter getting a false positive for verification is very low.

Allowing a voter to decrypt values after the ballot at first
glance appears to be a security flaw, because anyone can
decrypt cipher voters. However the challenge is capturing
the cipher votes. In Section VIII we address the issue of
a malicious user on the server capturing cipher votes, and
prevent eaves-dropping or man-in-the-middle attacks. That just
leaves the mobile agent since it needs to store the cipher vote
for verification. We discuss the security issues of mobile agents
in Section VII-B2. To summarise, if the mobile agent can be
made secure, then the verification is also secure.



Example:
In this example, a class of 8 students are asked to vote on
whether they like their teacher. The servers split the class into
2 groups, where Group 0 contains students 0-3 and Group 1
contains students 4-7. The students made the following votes
using a 32-bit public key, giving a final tally of 4 votes for
“yes”.

Voter 0 85108103601502032158
Voter 1 80478975519969916818
Voter 2 82205080082953515845
Voter 3 68976771831363902506

Voter 4 69855354796941217103
Voter 5 41321137482081815425
Voter 6 14280272528528046683
Voter 7 86056116539738524768

Alice is student 1, and would like to verify her vote of “yes”
has been included in the final tally. She requests the M and C
values for her group from any or all of the servers. She then
requests all partial decryptions of her groups C value. In this
example her group’s tally was 2. For this example we will not
check C0.

M0 = 4724503967345438759021717160383688706762532441031334
00909464

C0 = 35718563236129925271

Md =M0/Cvote

Md = 5870482243120886073226684756164388787948

Cd = Md mod n2

Cd = 10645547762907569226

She then sends Cd to all the servers for a partial decryption
(and dummy Cd), which results in a value of 1. Therefore
because 2 − 1 = 1, Alice’s vote was counted for her group’s
tally. Alice can then verify that her group’s tally is included
in the final tally using the same process.

Bob is student 2, but cannot remember if he submitted his
“yes” vote on time or not. He follows the same steps Alice
did. The decryption of the difference gives 7175337003, which
means 2 − 7175337003 6= 1. Therefore Bob’s vote did not
count towards the final tally.

VII. IMPLEMENTATION

A. Partially Homomorphic C Library

Currently there does not exist a library to help build
applications in the cloud which would like to use partially
homomorphic encryption. Therefore in this paper we also
propose the use of libhcs [32], a C library which implements
partially homomorphic schemes. The goal of libhcs is to bring
homomorphic encryption to the cloud, by making them easy
to use for cloud developers. Currently we have implemented
the Paillier [9], Damgård—Jurik [10] and El-Gamal [33] cryp-
tosystems. The library can also be compiled to support mobile
chipsets, provided that GMP (The GNU Multiple Precision
Arithmetic Library) [34] is also supported.

Fig. 6: Simple Voting Mobile Application Example.

B. Mobile Implementation

1) Performance: For our performance testing, we devel-
oped a simple iOS application to be run on an iPhone 5.
The iPhone 5 was chosen because it is the one of the last
iPhones to have a 32-bit processor, and is still one of most
used smartphones [35]. The example application is shown in
Figure 6, where a vote is being cast. This application makes
use of libhcs [32] and GMP [34] for computing the cipher
vote. How the ballots (questions in this case) are added to
the application can be done in many ways. It could be that
the user must manually enter the voting servers which can
send updates on ballots. This would be sufficient for smaller
ballots like at a university. However for a government election,
the servers and ballots may need to be hardcoded into the
application. Therefore because the application is signed in
the store [36][37], a user can verify they received the right
information.

We first tested the performance on an iPhone 5 (1.3 GHz
dual core Apple A6) for encrypting a vote with different bit
size for N . Note that if N is 32-bits, then because the cipher
value is modulo N2, the result can get up to 64-bits in size.
Figure 7 below shows that we get an exponential curve, which
is expected. This is because as the bit size increases, the
number of instructions to handle a single operation increases.
A proof is also required for the cipher value so that the
tally server knows it is within a set of allowed values. The
performance for generating the proof as shown below in
Figure 7, is even worse than encryption. Section III details
that many of the goals for adopting e-voting was to get more
people to vote. Having a quick voting time would help to
accomplish this goal. Given the results of encryption and
proof generation in Figure 7, with current mobile technologies
the largest size of N is 2048-bits. When taking into account
network transmission times, making a voter wait for less than
30-seconds is much better than the time to travel to a polling
station. For smaller scale ballots, using size(N) = 1024-bits
would be even faster.

For verification, a user’s device must divide out their cipher
vote from their large group value as discussed in Section VI-D.



32 128 512 2048
0

20

40

60

80

Size of N (Bits)

Ti
m

e
(S

ec
on

ds
)

Encryption
Large Division

Proof

Fig. 7: Mobile Voting Performance on an iPhone 5.

We tested the time to complete a large division instruction on
the iPhone 5 for groups of 100 voters. Figure 7 once again
shows the time increases with the bit size. With size(N) =
4096-bits, the instruction (8192× 100-bits / 8191-bits) takes
less than 0.9 seconds. Therefore the cost of this instruction is
manageable given the extra voter privacy it provides.

2) Security Threats: A current issue of using mobile agents
for voting is that mobiles are not secure [38][39][40][41].
The two biggest mobile operating systems [35], Android and
iOS, must be secure for mobile voting to become successful.
However both have security flaws and vulnerabilities at this
stage. Another issue is that the user must trust the application,
which could be achieved by open sourcing the code, and
having the application signed by a trusted authority.

With the ever growing amount of malware for Android
devices, private information such as messages and accounts
can be leaked from infected devices [40]. Malware could
therefore be used to leak the user’s ID and their private
encryption key generated for proving their identity. Unlike
Google, Apple does a relatively better job of stopping malware
being uploaded to their AppStore [39]. However this does
not mean Apple devices are secure enough for government
voting, especially ones that have been jailbroken [39]. For
example device backups to online storage are another threat
for data leakage. However when compared to Android, iOS
has a better security model, especially the permission system.
Android blacklists permissions, such that you can only use
the application if you accept all the permissions, whereas iOS
whitelists permissions, and does allow an application to be
used even with some permissions denied.

C. Server Implementation

1) Performance: We ran three experiments on a physical
machine (Intel(R) Core(TM) i7-2760QM CPU @ 2.40GHz);
homomorphic addition, homomorphic addition without using
the modulus, and partial decryption. Figure 8 gives the results
for each in seconds, for varying bit sizes of N . Addition with
the modulus operation is not effected much by the size of N ,
because the number of bits required remains constant. When
homomorphically adding two cipher values without modulus,

32 128 512 2048
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Size of N (Bits)

Ti
m

e
(S

ec
on

ds
)

Addition
Addition & Modulus

Partial Decryption

Fig. 8: Voting Performance for a Server Implementation.

the bit size of the result value grows proportional to the size of
N2. Therefore the performance decreases as the value grows.
The result is an average for the verification group of size 100.
Partial decryption, as the results in Figure 7 show, decreases
rapidly in performance as N increases.

Looking at these results in a real world scenario, with
size(N) = 2048-bits, this server can handle ≈ 360 votes per
second (excluding other computation overhead). This equates
to 1, 296, 000 votes per hour, meaning the population of
New Zealand would require under four hours for everyone
to vote [42]. Given a higher-powered server, or a dedicated
hardware server as described in Section VIII, the performance
cost of voting in the cloud is not a problem.

2) Security Threats: Like the mobile agents, the biggest
threat of the voting model comes from the underlying system
and its flaws. This was the primary attack vector used against
the Estonian government voting system [7]. An example of
a widespread vulnerability discovered in 2014 was Shell-
shock [43]. This could have rendered a voting system built
upon the Unix Bash Shell compromised. Therefore any voting
systems must be built using a secure platform, which we will
discuss in the next section.

VIII. SPECIALISED SYSTEM MODEL

Attacks on voting systems often focus on the underly-
ing software and operating system, not the actual voting
scheme [7]. To render these attacks ineffective, a secure voting
platform must be developed so it can be easily deployed in
the cloud. This could be achieved by either building a secure
operating system for voting only, or a hardware platform. In
this section we will describe a tally server hardware model
which can help solve many problems faced by voting with
software based servers. Note that the same approach can be
used to include a partial decryption server into the hardware
model as well.

Figure 9 below shows a simple model for submitting a vote
which could be implemented in a FPGA (Field-Programmable
Gate Array). Any data being received must be encrypted
with the servers public key. All data (voter decryption keys
and group tallies) in storage is also encrypted using another



Encrypted Storage

NIC / MAC

PUF

Decrypt ID1, Cu

PUF

Storage Controller Decrypt {ID2, Cv, Cp}

Check IDs and Proof

Overall Vote Tally

Group Vote Tally

Response

Fig. 9: Hardware Ballot Tally Model.

key pair. It makes use of two PUFs (Physical Unclonable
Functions) [44][45], which use the physical properties of the
die (i.e. silicon) such that a function can be easily evaluated,
but hard to predict. This keeps the private keys secure as
no knowledge of them is leaked using conventional attack
methods. Both keys for storage can remain private, while the
encryption key for transmitting to the server can be made
public. For a malicious user to gain access to the private
keys, they must have physical access to the server, and run
side-channel-attacks. For example in 2013, a group from
Berlin Institute of Technology managed to clone a PUF in
a laboratory by reading from SRAM (Static RAM) [46].

Another useful feature of developing a hardware solution for
keeping a secure vote tally is that is can be easily parallelised.
This design can be pipelined so that many votes are being
processed at once. For example, as a cipher vote is being
decrypted after the packet has been received, another could
be at the verification stage, whilst another is being tallied.
Therefore, not only does a hardware tally system have better
security properties, it can also deliver better performance per
unit of power compared to a traditional server [47][48].

IX. EVALUATION OF VOTING MODEL

We evaluate our system against the requirements described
in Section IV. Because of the extra security added by the
hardware model, we will use it for this section. We will also
assume that side-channel-attacks are not possible because there
is no physical access allowed to the server.

1) Eligibility: Each eligible voter receives an ID for the
ballot. This is sent out via post if the user is enrolled,
like paper based systems now. The user submits their
verification key to the server, and receives a hash to
confirm the key was uploaded correctly. Because we
are using the hardware model for the tally server, this
process is secure assuming the public key the user
received for the server is correct (this can be confirmed
at government agents, online and via post). If someone
else has submitted a verification key for their ID already,
then an error will occur and the user can contact the
authorities. The mobile agents (e.g. iOS or Android)
must be able to protect the ID and keys saved by the

voting application. If malware manages to infect the
device and leak this information, the malicious entity
can vote on their behalf.

2) Unreusability: A voter can only submit one vote during
the ballot which can be enforced in the tally servers.
This helps protect a user if their mobile agent gets
infected. An error will occur if they try and submit a
vote but a malicious entity has already voted using their
ID. This allows them to contact the authorities. Because
the private key of the tally servers are safe, a malicious
entity cannot trick the application into thinking they
submitted correctly because the hashes will not match.

3) Untraceability: Removing a public bulletin board for
displaying all cipher votes and IDs helps protect the
voters privacy. All individual voters are combined into
groups which hides how an individual voted. If a soft-
ware tally server is used and gets compromised, then
each cipher vote and ID could be logged and possibly
decrypted after the ballot. Hence we recommend the use
of a hardware tally server.

4) Verifiability: Using our proposed verification technique
described in Section VI-D, a voter can have full confi-
dence that their vote was cast correctly.

5) Tally Correctness: Because there are many tally count-
ing servers, all combinations of servers should give the
same tally if the ballot was not compromised. Each
voting server publishes the number of voters registered,
and the number that voted.

6) Uncoerceability: The application on the mobile agent
should not reveal the cipher vote or the vote value, only
if it was successfully included in the final tally or not.

7) Auditability: During the verification phase, a voter can
test the outcome of dummy votes to see that the result
changes correctly.

8) Accessibility: By supporting many types of mobile
agents, a voter is not restricted by location and can
use their existing mobile device to vote. The voting
procedure will be handled by the mobile application,
where the voter only has to select the ballot and their
vote, then cast it. Verification is also done via the tap of
a button. Our performance results show that the bit size
of N greatly affects the time it takes to cast a vote.

9) Fairness: This comes down to implementation. For
example a policy can be put in place such that the
decryption servers will only accept requests after the
ballot has finished.

10) Soundness: Voting parameters are encrypted twice, with
the servers public key, and user’s encryption keys. Then
all traffic is secured again using SSL. We have also
discussed how to prevent man-in-the-middle attacks and
network sniffing.

11) Integrity: Many tally and decryption servers are spread
over different locations and organisations. This prevents
the voting authority from controlling the outcome of the
ballot. Currently they can add fake users to the list of
IDs, however this problem also exists with paper voting.



12) Completeness: All eligible voters receive their ID in the
post, and can verify their vote was counted towards the
final tally.

X. EVALUATION AGAINST CHOSEN CIPHERTEXT ATTACKS

Formal definitions of plaintext attacks have been described
by Rackoff et al. [49], Luby [50] and Bellare et al. [51]. We
will discuss CCA (Chosen Ciphertext Attacks), in particular
CCA1-security (security against non-adaptive chosen cipher-
text attacks) because CCA2-security (security against adaptive
chosen ciphertext attacks) does not allow for homomorphic op-
erations. CCA1-security can be used instead of CPA-security
(security against chosen plaintext attacks) for e-voting [52].

A CCA attack is where an entity has access to the decryption
oracle, and can request the plaintext of arbitrary nonsense
ciphertext values to try and recover the private key [49][53]. In
our proposed scheme, any voter has access to the decryption
oracle in order to verify that their vote has been included in the
final tally. The decryption servers should only accept requests
from authenticated voters after the ballot. Because the number
of verifications a voter must perform to verify their vote is
known (i.e. how many groups need to be checked to verify
the final tally), each voter should have a limitation on the
number of decryption requests they can perform.

Even with these limitations in place, if a user still manages
to submit enough decryption requests to recover the private
key, they gain no extra knowledge of the ballot or how
individual users voted. This is because cipher votes are not
stored on the voting servers or included on a public bulletin
board, instead they are only added to the group’s cipher tally
then discarded. By using a hardware server with extra private
key protection as described in Section VIII, man-in-the-middle
attacks cannot reveal cipher votes. During verification, the
decryption servers receive a valid and dummy group cipher
value, therefore even with knowledge of the private key, it
would only reveal that a user voted for “yes” or “no”, but
not which one. The only case where this is not true is if
everyone in the group voted “yes” or everyone voted “no”.
However because a user is not directly linked to an ID, the
malicious user still does not know how individual voters voted.
The mobile application also prevents the cipher votes from
been seen, as the application only reveals ballot information,
and whether or not the user’s vote was successfully cast. There
does however need to be more research into how to stop the
cipher vote been leaked by malware.

XI. CURRENT PROBLEMS AND FUTURE WORK

There are a few problems that need to be addressed for a
system such as the one we propose to be at least as secure as
paper voting.
• Mobile Agents: There needs to be more work into

guaranteeing that any information (keys and IDs) stored
in the voting application remains secure and cannot be
leaked via malware. Also the performance of encryption
and proof generation needs to be improved, possibly by

writing more optimised code. This may include a list of
verified/certified mobile devices.

• Ballot Key Generation: Currently the key generation for
the ballot has to been done by a single entity before being
distributed to the tally and decryption servers. This is a
security threat, and can be addressed by generating the
key using distributed computation [31] similar to how the
decryption works.

• Corrupt Vote: Removing a vote once cast is currently
impossible with our design because individuals votes are
not saved, only the group tallies. If a corrupt vote has
been cast, a technique needs to be designed so that a
group can revote.

• Hardware Server: Given that a hardware server can
provide much better security, we would like to design
a working version and test the security in order to prove
our claims.

• Panic Voting: We would like to address the issue of a
voter being forced (e.g. by gunpoint) into voting a partic-
ular way. One possible solution is to have a panic mode
where the vote appears to have been cast correctly [54].

XII. CONCLUSION

This paper presents a scheme for a partially homomorphic
cloud-based mobile voting system, with implementation re-
sults to show its practicality. We have addressed some of
the current issues faced by e-voting, by improving voter
privacy, and proposing the use of a hardware tally server
for better security. Our scheme has been evaluated against
a list of proposed requirements, which any e-voting system
should meet. Currently the main limitation of such a scheme
is the mobile agents, which lack security guarantees that a
government voting system requires. Once addressed, like other
future work, this remote e-voting scheme should be as secure
as current paper voting techniques.

XIII. ACKNOWLEDGEMENTS

This research is supported by STRATUS (Security Tech-
nologies Returning Accountability, Trust and User-Centric
Services in the Cloud) (https://stratus.org.nz), a science invest-
ment project funded by the New Zealand Ministry of Business,
Innovation and Employment (MBIE). The authors would also
like to acknowledge Raja Naeem Akram for his contributions
to the mobile voting requirements list.

REFERENCES

[1] Dates and turnout of New Zealand General Elections.
[Online] http://www.elections.org.nz/events/past-events/
general-elections-1853-2014-dates-and-turnout (Accessed 08/06/15).

[2] Tim Storer and Ishbel Duncan. Electronic Voting in the UK: Current
Trends in Deployment, Requirements and Technologies. In PST, 2005.

[3] Jan Gerlach and Urs Gasser. Three Case Studies from Switzerland:
E-voting. Berkman Center Research Publication No, 3, 2009.

[4] Voter and Non-Voter Satisfaction Survey 2011. [Online]
http://www.elections.org.nz/events/past-events-0/2011-general-election/
reports-and-surveys-2011-general-election/voter-and-non (Accessed
08/06/15).

[5] Ryan K. L. Ko. Cloud Computing in Plain English. Crossroads, 16(3):5–
6, March 2010.



[6] R Michael Alvarez, Thad E Hall, and Alexander H Trechsel. Internet
Voting in Comparative Perspective: The Case of Estonia. PS: Political
Science & Politics, 42(03):497–505, 2009.

[7] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri
Hursti, Margaret MacAlpine, and J Alex Halderman. Security Analysis
of the Estonian Internet Voting System. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
pages 703–715, 2014.

[8] Mark A. Will and Ryan K.L. Ko. A guide to homomorphic encryption.
In The Cloud Security Ecosystem: Technical, Legal, Business and
Management Issues, pages 101–127. Elsevier, 2015.

[9] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in cryptology—EUROCRYPT’99, pages
223–238. Springer, 1999.

[10] Ivan Damgård and Mads Jurik. A generalisation, a simpli. cation and
some applications of paillier’s probabilistic public-key system. In Public
Key Cryptography, pages 119–136. Springer, 2001.

[11] Ben Adida. Helios: Web-based open-audit voting. In USENIX Security
Symposium, volume 17, pages 335–348, 2008.

[12] Josh Benaloh. Simple verifiable elections. In Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006 on
Electronic Voting Technology Workshop, pages 5–5. USENIX Associ-
ation, 2006.

[13] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In
Advances in Cryptology—EUROCRYPT’95, pages 393–403. Springer,
1995.

[14] Feng Hao and Matthew Nicolas Kreeger. Every Vote Counts: Ensuring
Integrity in Large-Scale DRE-based Electronic Voting. Newcastle
University, Computing Science, 2011.

[15] Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung.
Multi-authority secret-ballot elections with linear work. In Advances in
Cryptology—EUROCRYPT’96, pages 72–83. Springer, 1996.

[16] Byoungcheon Lee and Kwangjo Kim. Receipt-free Electronic Voting
through Collaboration of Voter and Honest Verifier. In Proceeding of
JW-ISC2000, pages 101–108, 2000.

[17] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern,
and Guillaume Poupard. Practical Multi-Candidate Election System. In
Proceedings of the Twentieth Annual ACM Symposium on Principles of
Distributed Computing, pages 274–283. ACM, 2001.

[18] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant
Electronic Elections. In Proceedings of the 2005 ACM Workshop on
Privacy in the Electronic Society, pages 61–70. ACM, 2005.

[19] Josh D Cohen and Michael J Fischer. A Robust and Verifiable
Cryptographically Secure Election Scheme. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, pages 372–382. IEEE,
1985.

[20] Feng Hao, Brian Randell, and Dylan Clarke. Self-Enforcing Electronic
Voting. Springer, 2012.

[21] Dylan Clarke, Feng Hao, and Brian Randell. Analysis of Issues and
Challenges of E-Voting in the UK. In Security Protocols XX, pages
126–135. Springer, 2012.

[22] Arne Ansper, Sven Heiberg, Helger Lipmaa, Tom André Øverland, and
Filip Van Laenen. Security and Trust for the Norwegian E-voting Pilot
Project E-valg 2011. In Identity and Privacy in the Internet Age, pages
207–222. Springer, 2009.

[23] Reto E Koenig, Philipp Locher, and Rolf Haenni. Attacking the
Verification Code Mechanism in the Norwegian Internet Voting System.
In E-Voting and Identify, pages 76–92. Springer, 2013.

[24] Scott Wolchok, Eric Wustrow, Dawn Isabel, and J Alex Halderman.
Attacking the Washington, DC Internet Voting System. In Financial
Cryptography and Data Security, pages 114–128. Springer, 2012.

[25] Nicole J Goodman. Internet Voting in a Local Election in Canada. In The
Internet and Democracy in Global Perspective, pages 7–24. Springer,
2014.

[26] Dimitrios Zissis and Dimitrios Lekkas. Securing e-government and
e-voting with an open cloud computing architecture. Government
Information Quarterly, 28(2):239–251, 2011.

[27] Chun-I Fan and Wei-Zhe Sun. An Efficient Multi-Receipt Mechanism
for Uncoercible Anonymous Electronic Voting. Mathematical and
Computer Modelling, 48(9):1611–1627, 2008.

[28] Dimitris A Gritzalis. Principles and Requirements for a Secure e-voting
System. Computers & Security, 21(6):539–556, 2002.

[29] Wei-Chi Ku and Sheng-De Wang. A Secure and Practical Electronic
Voting Scheme. Computer Communications, 22(3):279–286, 1999.

[30] Horng-Twu Liaw. A Secure Electronic Voting Protocol for General
Elections. Computers & Security, 23(2):107–119, 2004.

[31] Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Secure multi-
party computation and secret sharing-an information theoretic appoach.
Book Draft, 2012.

[32] libhcs. [Online] https://github.com/Tiehuis/libhcs (Accessed 28/05/15).
[33] Taher ElGamal. A public key cryptosystem and a signature scheme

based on discrete logarithms. In Advances in Cryptology, pages 10–18.
Springer, 1985.

[34] The GNU Multiple Precision Arithmetic Library. [Online]
https://gmplib.org (Accessed 28/05/15).

[35] ScientiaMobile. Mobile Overview Report October - December 2014.
[Online] http://www.scientiamobile.com/page/wp-content/uploads/2015/
02/MOVR Q4 2014 v6.pdf (Accessed 07/06/15).

[36] iOS Developer Library - About App Distribution. [Online]
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/
AppDistributionGuide/Introduction/Introduction.html (Accessed
07/06/15).

[37] Android - Signing Your Applications. [Online] http://developer.android.
com/tools/publishing/app-signing.html (Accessed 07/06/15).

[38] Alexios Mylonas, Stelios Dritsas, Bill Tsoumas, and Dimitris Gritzalis.
Smartphone security evaluation-the malware attack case. SECRYPT,
11:25–36, 2011.

[39] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and
David Wagner. A survey of mobile malware in the wild. In Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices, pages 3–14. ACM, 2011.

[40] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Charac-
terization and evolution. In Security and Privacy (SP), 2012 IEEE
Symposium on, pages 95–109. IEEE, 2012.

[41] Alexios Mylonas, Marianthi Theoharidou, and Dimitris Gritzalis. As-
sessing privacy risks in android: a user-centric approach. In Risk
Assessment and Risk-Driven Testing, pages 21–37. Springer, 2014.

[42] New Zealand Population Clock. [Online] http://www.stats.govt.nz/tools
and services/population clock.aspx (Accessed 07/06/15).

[43] John Graham-Cumming. Inside Shellshock: How hackers are using it to
exploit systems. [Online] https://blog.cloudflare.com/inside-shellshock/
(Accessed 08/06/15), September 2014.

[44] G Edward Suh and Srinivas Devadas. Physical unclonable functions for
device authentication and secret key generation. In Proceedings of the
44th annual Design Automation Conference, pages 9–14. ACM, 2007.

[45] Jorge Guajardo, Sandeep S Kumar, G-J Schrijen, and Pim Tuyls.
Physical unclonable functions and public-key crypto for FPGA IP
protection. In Field Programmable Logic and Applications, 2007. FPL
2007. International Conference on, pages 189–195. IEEE, 2007.

[46] Clemens Helfmeier, Christian Boit, Dmitry Nedospasov, and J-P Seifert.
Cloning physically unclonable functions. In Hardware-Oriented Security
and Trust (HOST), 2013 IEEE International Symposium on, pages 1–6.
IEEE, 2013.

[47] Ying Liu, Khaled Benkrid, AbdSamad Benkrid, and Server Kasap.
An fpga-based web server for high performance biological sequence
alignment. In Adaptive Hardware and Systems, 2009. AHS 2009.
NASA/ESA Conference on, pages 361–368. IEEE, 2009.

[48] Mark A. Will. Real-time Image Processing. Honours thesis, The
University of Waikato, 2013, [Online] http://markwill.me/publications/
(Accessed 07/06/15).

[49] Charles Rackoff and Daniel R Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. In Advances in
Cryptology—CRYPTO’91, pages 433–444. Springer, 1992.

[50] Michael George Luby. Pseudorandomness and cryptographic applica-
tions. Princeton University Press, 1996.

[51] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A
concrete security treatment of symmetric encryption. In Foundations
of Computer Science, 1997. Proceedings., 38th Annual Symposium on,
pages 394–403. IEEE, 1997.

[52] Helger Lipmaa. On the cca1-security of elgamal and damgård’s elgamal.
In Information Security and Cryptology, pages 18–35. Springer, 2011.

[53] Pierre-Alain Fouque and David Pointcheval. Threshold cryptosystems
secure against chosen-ciphertext attacks. In Advances in Cryptology—
ASIACRYPT 2001, pages 351–368. Springer, 2001.

[54] Jeremy Clark and Urs Hengartner. Selections: Internet voting with over-
the-shoulder coercion-resistance. In Financial Cryptography and Data
Security, pages 47–61. Springer, 2012.


