29 research outputs found

    Contributions of residential coal combustion to the air qualityin Beijing–Tianjin–Hebei (BTH), China: a case study

    Get PDF
    In the present study, the WRF-Chem model is used to assess contributions of residential coal combustion (RCC) emissions to the air quality in Beijing-Tianjin-Hebei (BTH) during a persistent air pollution episode from 9 to 25 January 2014. In general, the predicted temporal variations and spatial distributions of the mass concentrations of air pollutants are in good agreement with observations at monitoring sites in BTH. The WRF-Chem model also reasonably reproduces the temporal variations in aerosol species when compared with the aerosol mass spectrometer measurements in Beijing. The RCC emissions play an important role in the haze formation in BTH, contributing about 23.1% of PM2.5 (fine particulate matter) and 42.6% of SO2 during the simulation period on average. Organic aerosols dominate the PM2.5 from the RCC emissions in BTH, with a contribution of 42.8 %, followed by sulfate (17.1 %). The air quality in Beijing is remarkably improved when the RCC emissions in BTH and the surrounding areas are excluded in model simulations, with a 30% decrease in PM2.5 mass concentrations. However, if only the RCC emissions in Beijing are excluded, the local PM2.5 mass concentration is decreased by 18.0% on average. Our results suggest that the implementation of the residential coal replacement by clean energy sources in Beijing is beneficial to the local air quality. Should residential coal replacement be carried out in BTH and its surrounding areas, the air quality in Beijing would be improved remarkably. Further studies would need to consider uncertainties in the emission inventory and meteorological fields

    Chemical characterization of PM2.5 from a southern coastal city of China:applications of modeling and chemical tracers in demonstrationof regional transport

    Get PDF
    An intensive sampling campaign of airborne fine particles (PM2.5) was conducted at Sanya, a coastal city in Southern China, from January to February 2012. Chemical analyses and mass reconstruction were used identify potential pollution sources and investigate atmospheric reaction mechanisms. A thermodynamic model indicated that low ammonia and high relative humidity caused the aerosols be acidic and that drove heterogeneous reactions which led to the formation of secondary inorganic aerosol. Relationships among neutralization ratios, free acidity, and air-mass trajectories suggest that the atmosphere at Sanya was impacted by both local and regional emissions. Three major transport pathways were identified, and flow from the northeast (from South China) typically brought the most polluted air to Sanya. A case study confirmed strong impact from South China (e.g., Pearl River Delta region) (contributed 76.8% to EC, and then this result can be extended to primary pollutants) when the northeast winds were dominant. The Weather Research Forecasting Black carbon model and trace organic markers were used to apportion local pollution versus regional contributions. Results of the study offer new insights into the atmospheric conditions and air pollution at this coastal city

    Brown Carbon Aerosol in Urban Xi’an, Northwest China: TheComposition and Light Absorption Properties

    Get PDF
    Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) was found to correlate strongly with both parent polycyclic aromatic hydrocarbons (parent-PAHs, 27 species) and their carbonyl oxygenated derivatives (carbonyl-OPAHs, 15 species) in all seasons (r(2) > 0.61). These measured parent-PAHs and carbonyl-OPAHs account for on average similar to 1.7% of the overall absorption of methanol-soluble BrC, about 5 times higher than their mass fraction in total organic carbon (OC, similar to 0.35%). The fractional solar absorption by BrC relative to element carbon (EC) in the ultraviolet range (300-400 nm) is significant during winter (42 +/- 18% for water-soluble BrC and 76 +/- 29% for methanol-soluble BrC), which may greatly affect the radiative balance and tropospheric photochemistry and therefore the climate and air quality

    Possible effects of climate change of wind on aerosol variation duringwinter in Shanghai, China

    No full text
    Several data sets were introduced to investigate the possible effects of climate-change-related variation of wind on aerosol concentration during winter in Shanghai, China. These data sets included the daily wind speed, wind direction, visibility, and precipitation from 1956 to 2010, hourly PM10 concentration from 2008 to 2010, and the NCEP/NCAR reanalysis data of global atmospheric circulation from 1956 to 2010. The trend of aerosol concentration and its correlations with wind speed and wind direction in winter were analyzed. Results indicated that there was an increase in the number of haze days in winter of 2.1 days/decade. Aerosol concentration, represented by PM10 in this study, was highly correlated to both wind speed and direction in winter. The PM10 concentration increased as wind speed decreased, reaching maximum values under static wind conditions. The PM10 concentration was relatively lower under easterly winds and higher under westerly winds. The analysis showed that weaker East Asia winter monsoons have resulted in a reduction of wind speed, increase in static wind frequency, and decline in the frequency of northerly winds since the 1980s. Moreover, the rapid expansion of urban construction in Shanghai has changed the underlying surface considerably, which has led to a reduction in wind speed. Finally, a wind factor was defined to estimate the combined effects of wind speed and wind direction on aerosol concentrations in Shanghai. The analysis of this factor indicated that changes in atmosphere circulation and urbanization have had important effects on the number of winter haze days in Shanghai

    Numerical Simulation of the Micro Environment in the Han Yang Mausoleum Museum

    No full text
    As a first underground museum in the world, whole sealed glass system is adopted in the Han Yang Mausoleum Museum to protect relics from the destruction by microbe and pollution in the atmosphere and to provide visitors a wonderful environment for enjoying the fantastic artwork closely from different angles. This study shows that, this method cannot completely stop relics from the destruction. The main reason is that, in the museum, the microbe growth and pollution spread are fairly significant to affect the protection of relics. This study numerically simulates the micro environment in the museum, including air movement, temperature and relative humidity by using the CFD software Fluent. The major findings are summaried as the followes: there are four air cyclones; temperature is getting lower from one side to another; and relative humidity profile is reversed, especially at the surface. This numerical result provides useful information for the protection of relics.</p

    Measurements of vertical and horizontal distributions of ozone over Beijing from 2007 to 2010

    No full text
    The vertical distributions of ozone (O-3) over a mega city (Beijing, China), and the horizontal O-3 distributions in the lower troposphere (2-3.6 km) over Beijing and its surrounding areas located in the North China Plain (NCP), were analyzed based on the aircraft measurements from 159 flights during 2007-2010. The results are highlighted as follows: (1) There was a peak of O-3 concentration occurring at 1 km over Beijing, and the peak values ranged between 60 and 120 ppbv. (2) There was an O-3 minimum at the surface. The minimum was largely caused by the chemical reaction of NO + O-3. This process produced about 30 ppbv of the O-3 reduction below 0.5 km in the morning (9:00-10:00). (3) There was a transition altitude (similar to 1 km), below which the ozone formation was in a VOC-limited condition, and above which the ozone formation was in a NOx-limited condition. (4) The analysis of the horizontal distribution shows that O-3 concentrations were enhanced in the downwind of the city plumes. This result suggests that there was an important regional O-3 chemical production in the NCP region.</p

    Characteristics of heavy aerosol pollution during the 2012-2013 winter in Beijing, China

    No full text
    A comprehensive measurement was carried out to analyze the heavy haze events during 2012-2013 winter in Beijing. The measured variables include some important meteorological parameters, such wind directions, wind speeds, relative humidity (RH), planetary boundary layer (PBL), solar radiation, and visibility. The aerosol composition and concentrations (including particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)) as well as their gas-phase precursors (including nitrogen oxides (NOx) and sulfur dioxide (SO2)) were analyzed during the period between Nov. 16, 2012 and Jan. 15, 2013. The results show that the hourly mean concentrations of PM2.5 often exceeded 200 pg/m(3), with a maximum concentration of 600 ig/m(3) on Jan. 13, 2013. The relative humidity was increased during the haze events, indicating that both aerosol concentrations and RH had important effect on the reduction of visibility, causing the occurrence of the haze events. Because the wind speeds were generally low (less than 1 m/s) during the haze event, the vertical dispersion and the PBL heights were very important factors for causing the strong variability of aerosol concentrations. This study also finds that under the lower visibility condition, the conversion from the gas-phase of NOx and SO2 to the particle phase of NO3 and SO4 were higher than the values under the higher visibility condition. Because the lower visibility condition was corresponding to the lower photochemical activity than the higher visibility condition, the higher conversion from gas phase to particle phase in the lower visibility condition indicated that there was important heterogeneous formation of NO3 and SO4 during the heavy haze events.</p

    Analysis of the causes of heavy aerosol pollution in Beijing, China:A case study with the WRF-Chem model

    No full text
    The causes and variability of a heavy haze episode in the Beijing region was analyzed. During the episode, the PM2.5 concentration reached a peak value of 450 g/kg on January 18, 2013 and rapidly decreased to 100 g/kg on January 19, 2013, characterizing a large variability in a very short period. This strong variability provides a good opportunity to study the causes of the haze formation. The in situ measurements (including surface meteorological data and vertical structures of the winds, temperature, humidity, and planetary boundary layer (PBL)) together with a chemical/dynamical regional model (WRF-Chem) were used for the analysis. In order to understand the rapid variability of the PM2.5 concentration in the episode, the correlation between the measured meteorological data (including wind speed, PBL height, relative humidity, etc.) and the measured particle concentration (PM2.5 concentration) was studied. In addition, two sensitive model experiments were performed to study the effect of individual contribution from local emissions and regional surrounding emissions to the heavy haze formation. The results suggest that there were two major meteorological factors in controlling the variability of the PM2.5 concentration, namely, surface wind speed and PBL height. During high wind periods, the horizontal transport of aerosol particles played an important role, and the heavy haze was formed when the wind speeds were very weak (less than 1 m/s). Under weak wind conditions, the horizontal transport of aerosol particles was also weak, and the vertical mixing of aerosol particles played an important role. As a result, the PBL height was a major factor in controlling the variability of the PM2.5 concentration. Under the shallow PBL height, aerosol particles were strongly confined near the surface, producing a high surface PM2.5 concentration. The sensitivity model study suggests that the local emissions (emissions from the Beijing region only) were the major cause for the heavy haze events. With only local emissions, the calculated peak value of the PM2.5 concentration was 350 g/kg, which accounted for 78% of the measured peak value (450 g/kg). In contrast, without the local emissions, the calculated peak value of the PM2.5 concentration was only 100 g/kg, which accounted for 22% of the measured peak value
    corecore