3 research outputs found

    Plastic adjustments in xylem vessel traits to drought events in three Cedrela species from Peruvian Tropical Andean forests

    Get PDF
    Cedrela species occur within the Tropical montane cloud forest (TMCF) and rainforest in North America (Mexico), Central and South America. We assessed the hypothesis that functional xylem hydraulic architecture might be influenced by specific climatic variations. We investigated the effect of climate on tree-ring width and vessel traits (diameter, vessel density, vulnerability index and hydraulic diameter) of three relict-endemic and threatened Cedrela species (Cedrela fissilis, C. nebulosa and C. angustifolia) inhabiting Peruvian Tropical Andean cloud forests. All Cedrela species showed a significant reduction in radial growth and adjusted vessel trait linked with temperature, precipitation, and evapotranspiration. Ring-width and vessel traits showed adaptation within Cedrela species, crucial to understanding a rough indication of the plant’s ability to withstand drought-induced embolism or cavitation. Our results provide evidence for hydraulic mechanisms that determine specific wood anatomical functionality to climatic variation and drought responses. Therefore, changing the frequency or intensity of future drought events might exceed the adaptive limits of TMCF tree species, resulting in a substantial reduction of hydraulic functionality in Peruvian Cedrela species.Fil: Rodríguez Ramírez, Ernesto C.. Universidad Continental; PerúFil: Ferrero, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Acevedo-Vega, Ingrith. Universidad Continental; PerúFil: Crispin DelaCruz, Doris B.. Universidad Continental; Perú. Universidade Federal de Pernambuco; BrasilFil: Ticse Otarola, Ginette Vilma Alicia. Universidad Continental; Perú. Asociación ANDINUS; PerúFil: Requena Rojas, Edilson Jimmy. Universidad Continental; Per

    Revealing Polylepis microphylla as a suitable tree species for dendrochronology and quantitative wood anatomy in the Andean montane forests

    Get PDF
    In the tropical Andes climate change is expected to increase temperatures and change precipitation patterns. To overcome the lack of systematic weather records that limits the performance of climate models in this region, the use of the environmental information contained in tree rings from tropical Andean species have been found useful to reconstruct spatio-temporal climate variability. Because classical dendrochronology based on ring-width patterns is often challenging in the tropics, alternative approaches such as Quantitative Wood Anatomy (QWA) based on the measurement and quantification of anatomical traits within tree rings can be a significant advance in the field. Here we assess the dendrochronological potential of Polylepis microphylla and its climate sensitivity by using i) classic dendrochronological methods to generate the first Tree-ring Width (TRW) chronology for this tree species spanning from 1965 to 2018; ii) radiocarbon (¹⁴C) analyses as an independent validation method to assess the annual periodicity of the tree growth layers; and iii) QWA to generate tree-ring annual records of the number (VN) and size (VS) of vessels to investigate the climate sensitivity of these anatomical traits. The annual periodicity in P. microphylla radial growth was confirmed by both dendrochronological and ¹⁴C analyses. We found that VN and VS are promising new proxies to reconstruct climate variability in this region and that they provide different information than TRW. While TRW provides information at inter-annual resolution (i.e., year-to-year variability), VN and VS generated with sectorial QWA provide intra-annual resolution for each stage of the growing process. The TRW and the anatomical traits (i.e., VN and VS) showed strong positive correlation with maximum temperature for different periods of the growing season: while VS is higher with warmer conditions prior to the growing season onset, tree-rings are wider and present higher number of vessels when warmer conditions occur during the current growing season. Our findings pointed out the suitability of P. microphylla for dendrochronological studies and may suggest a good performance of this species under the significant warming expected according to future projections for the tropical Andes.Fil: Rodríguez Morata, C.. Columbia University; Estados UnidosFil: Pacheco Solana, A.. Columbia University; Estados UnidosFil: Ticse Otarola, Ginette Vilma Alicia. Universidad Continental; Perú. Asociación ANDINUS; PerúFil: Boza Espinoza, T. E.. Pontificia Universidad Católica de Perú; PerúFil: Crispín-DelaCruz, D.B.. Universidad Federal Rural Pernambuco; Brasil. Universidad Continental; PerúFil: Santos, G. M.. University of California; Estados UnidosFil: Morales, Mariano Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Continental; PerúFil: Requena Rojas, Edilson Jimmy. Universidad Continental; PerúFil: Andreu Hayles, Laia. Institució Catalana de Recerca I Estudis Avançats; España. Consejo Superior de Investigaciones Científicas. Centre de Recerca Ecológica I Aplicacions Forestals; España. Columbia University; Estados Unido

    Age structure and climate sensitivity of a high Andean relict forest of Polylepis rodolfo-vasquezii in central Peru

    No full text
    For a better understanding of forest ecology, tree-ring studies can provide information on climate sensitivity, tree growth patterns and population age structure that can inform about stand dynamics such as recruitment of new individuals, and other interspecific interactions related to competition and facilitation. Little is known about the ecology of the recently identified high Andean tree species Polylepis rodolfo-vasquezii. Here, we analyzed the relationship between tree size and age of two P. rodolfo-vasquezii forest stands located in the central Peruvian Andes at 11°S in latitude, and compared their growth patterns and climate sensitivity. We measured the height and diameter of each individual tree and collected tree core samples of living trees and cross sections of dead standing trees to generate two centennial tree-ring chronology at Toldopampa (1825–2015 CE) and at Pomamanta (1824–2014 CE) sites. The dendrochronological dates were evaluated by 14C analysis using the bomb-pulse methods analyzing a total of 9 calendar years that confirm the annual periodicity of this tree species. At the Toldopampa stand most trees ranged from 70 to 80 years old, with a 190-year old individual, being an older and better preserve forest than Pomamanta, with younger trees, probably because more human disturbances due to closer village proximity. No significant relationships were found between tree age and size in the oldest stand alerting that tree diameter should not be used as a metric for estimating tree ages as a general rule. The distinct growth patterns and the size-age relationship observed at the two forests may reflect distinct histories regarding human activities such as fire and logging. Nevertheless, both the Toldopampa and the Pomamanta tree-ring width chronologies exhibited common growth patterns and shared a similar positive response to temperature of the current growing season. Overall, our study confirmed the annual radial growth periodicity in P. rodofolfo-vasquezii trees using an independent method such as 14C analyses and a strong climate sensitivity of this tree species. These findings encourage the development of an extensive P. rodolfo-vasquezii tree-ring network for ecological and paleoclimate studies in the tropical Andes in South America.Fil: Ticse Otarola, Ginette Vilma Alicia. Universidad Continental; PerúFil: Vidal, Osir D.. Universidad Continental; PerúFil: Andreu Hayles, Laia. Consejo Superior de Investigaciones Científicas. Centre de Recerca Ecológica I Aplicacions Forestals; España. Institució Catalana de Recerca i Estudis Avancats; España. Columbia University; Estados UnidosFil: Quispe Melgar, Harold R.. Asociación ANDINUS; Perú. Universidad Continental; PerúFil: Amoroso, Mariano Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; ArgentinaFil: Santos, Guaciara M.. University of California at Irvine; Estados UnidosFil: Requena Rojas, Edilson Jimmy. Universidad Continental; Per
    corecore