53 research outputs found

    Spherically symmetric Einstein-Maxwell theory and loop quantum gravity corrections

    Full text link
    Effects of inverse triad corrections and (point) holonomy corrections, occuring in loop quantum gravity, are considered on the properties of Reissner-Nordstr\"om black holes. The version of inverse triad corrections with unmodified constraint algebra reveals the possibility of occurrence of three horizons (over a finite range of mass) and also shows a mass threshold beyond which the inner horizon disappears. For the version with modified constraint algebra, coordinate transformations are no longer a good symmetry. The covariance property of spacetime is regained by using a \emph{quantum} notion of mapping from phase space to spacetime. The resulting quantum effects in both versions of these corrections can be associated with renormalization of either mass, charge or wave function. In neither of the versions, Newton's constant is renormalized. (Point) Holonomy corrections are shown to preclude the undeformed version of constraint algebra as also a static solution, though time-independent solutions exist. A possible reason for difficulty in constructing a covariant metric for these corrections is highlighted. Furthermore, the deformed algebra with holonomy corrections is shown to imply signature change.Comment: 38 pages, 9 figures, matches published versio

    Classical and Quantum Gravitational Collapse in d-dim AdS Spacetime I. Classical Solutions

    Full text link
    We study the collapse of a spherically symmetric dust distribution in dd-dimensional AdS spacetime. We investigate the role of dimensionality, and the presence of a negative cosmological constant, in determining the formation of trapped surfaces and the end state of gravitational collapse. We obtain the self-similar solution for the case of zero cosmological constant, and show that one cannot construct a self-similar solution when a cosmological constant is included.Comment: 19 pages, sections on surface gravity removed, section on self similar solution expanded, appendix removed, references added. To appear in Phys. Rev.

    Electron-phonon interaction contribution to the total energy of group IV semiconductor polymorphs: evaluation and implications

    Full text link
    In density functional theory (DFT) based total energy studies, the van der Waals (vdW) and zero-point vibrational energy (ZPVE) correction terms are included to obtain energy differences between polymorphs. We introduce a new correction term, due to electron-phonon interactions (EPI). We rely on Allen's general formalism, which goes beyond the Quasi-Harmonic Approximation (QHA), to include the free energy contributions due to quasiparticle interactions. We show that, for semiconductors and insulators, the EPI contributions to the free energies of electrons and phonons are constant terms. Using Allen's formalism in combination with the Allen-Heine theory for EPI corrections, we calculate the zero-point EPI corrections to the total energy for cubic and hexagonal polytypes of Carbon, Silicon and Silicon Carbide. The EPI corrections alter the energy differences between polytypes. In SiC polytypes, the EPI correction term is more sensitive to crystal structure than the vdW and ZPVE terms and is thus essential in determining their energy differences. It clearly establishes that the cubic SiC-3C is metastable and hexagonal SiC-4H is the stable polytype. Our results are consistent with the experimental results of Kleykamp. Our study enables the inclusion of EPI corrections as a separate term in the free energy expression. This opens the way to beyond the QHA by including the contribution of EPI on all thermodynamic properties.Comment: Submitted for publication. 32 pages and 2 figure

    Lemaitre-Tolman-Bondi collapse from the perspective of loop quantum gravity

    Full text link
    Lemaitre-Tolman-Bondi models as specific spherically symmetric solutions of general relativity simplify in their reduced form some of the mathematical ingredients of black hole or cosmological applications. The conditions imposed in addition to spherical symmetry turn out to take a simple form at the kinematical level of loop quantum gravity, which allows a discussion of their implications at the quantum level. Moreover, the spherically symmetric setting of inhomogeneity illustrates several non-trivial properties of lattice refinements of discrete quantum gravity. Nevertheless, the situation at the dynamical level is quite non-trivial and thus provides insights to the anomaly problem. At an effective level, consistent versions of the dynamics are presented which implement the conditions together with the dynamical constraints of gravity in an anomaly-free manner. These are then used for analytical as well as numerical investigations of the fate of classical singularities, including non-spacelike ones, as they generically develop in these models. None of the corrections used here resolve those singularities by regular effective geometries. However, there are numerical indications that the collapse ends in a tamer shell-crossing singularity prior to the formation of central singularities for mass functions giving a regular conserved mass density. Moreover, we find quantum gravitational obstructions to the existence of exactly homogeneous solutions within this class of models. This indicates that homogeneous models must be seen in a wider context of inhomogeneous solutions and their reduction in order to provide reliable dynamical conclusions.Comment: 56 pages, 42 figure

    The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset

    Full text link
    Purpose: To organize a knee MRI segmentation challenge for characterizing the semantic and clinical efficacy of automatic segmentation methods relevant for monitoring osteoarthritis progression. Methods: A dataset partition consisting of 3D knee MRI from 88 subjects at two timepoints with ground-truth articular (femoral, tibial, patellar) cartilage and meniscus segmentations was standardized. Challenge submissions and a majority-vote ensemble were evaluated using Dice score, average symmetric surface distance, volumetric overlap error, and coefficient of variation on a hold-out test set. Similarities in network segmentations were evaluated using pairwise Dice correlations. Articular cartilage thickness was computed per-scan and longitudinally. Correlation between thickness error and segmentation metrics was measured using Pearson's coefficient. Two empirical upper bounds for ensemble performance were computed using combinations of model outputs that consolidated true positives and true negatives. Results: Six teams (T1-T6) submitted entries for the challenge. No significant differences were observed across all segmentation metrics for all tissues (p=1.0) among the four top-performing networks (T2, T3, T4, T6). Dice correlations between network pairs were high (>0.85). Per-scan thickness errors were negligible among T1-T4 (p=0.99) and longitudinal changes showed minimal bias (<0.03mm). Low correlations (<0.41) were observed between segmentation metrics and thickness error. The majority-vote ensemble was comparable to top performing networks (p=1.0). Empirical upper bound performances were similar for both combinations (p=1.0). Conclusion: Diverse networks learned to segment the knee similarly where high segmentation accuracy did not correlate to cartilage thickness accuracy. Voting ensembles did not outperform individual networks but may help regularize individual models.Comment: Submitted to Radiology: Artificial Intelligence; Fixed typo

    Micro force sensor with piezoresistive amorphous carbon strain gauge

    No full text
    In this contribution we report for the first time on the successful integration of amorphous carbon (a-C) as a piezoresistive strain gauge into a silicon micro cantilever force sensor. Sputter-deposited a-C layers showing excellent tribological properties contain a percentage of nearly 20% of tetrahedral sp3 carbon bonds as observed by optical absorption and Raman spectroscopy. Temperature-dependent transport measurements revealed hopping conduction between conducting sp2 carbon sites embedded in the insulating skeletal matrix of sp3 bonds. Changing their distance by strain a change of resistivity could be expected, which was investigated with layers sputter-deposited on a silicon membrane and structured by the lift-off technique using photo resist. Cantilevers comprising a-C strain gauges were etched out of this membrane using tetra methyl ammonium hydroxide (TMAH) and potassium hydroxide (KOH) solutions in a bulk silicon micromachining process. Realised prototypes were tested by applying a variable load to the cantilever free end. We found linear characteristics of the strain gauge resistance versus the applied force in the range of 0 to ±600 µN revealing piezoresistive gauge factors of a-C within 36-46
    • …
    corecore