55 research outputs found

    Heart failure with preserved ejection fraction: diagnosis, risk assessment, and treatment

    Get PDF
    The aetiology of heart failure with preserved ejection fraction (HFpEF) is heterogenous and overlaps with that of several comorbidities like atrial fibrillation, diabetes mellitus, chronic kidney disease, valvular heart disease, iron deficiency, or sarcopenia. The diagnosis of HFpEF involves evaluating cardiac dysfunction through imaging techniques and assessing increased left ventricular filling pressure, which can be measured directly or estimated through various proxies including natriuretic peptides. To better narrow down the differential diagnosis of HFpEF, European and American heart failure guidelines advocate the use of different algorithms including comorbidities that require diagnosis and rigorous treatment during the evaluation process. Therapeutic recommendations differ between guidelines. Whilst sodium glucose transporter 2 inhibitors have a solid evidence base, the recommendations differ with regard to the use of inhibitors of the renin–angiotensin–aldosterone axis. Unless indicated for specific comorbidities, the use of beta-blockers should be discouraged in HFpEF. The aim of this article is to provide an overview of the current state of the art in HFpEF diagnosis, clinical evaluation, and treatment

    Cardiac iron concentration in relation to systemic iron status and disease severity in non-ischaemic heart failure with reduced ejection fraction

    Get PDF
    Aims: Low cardiac iron levels promote heart failure in experimental models. While cardiac iron concentration (CI) is decreased in patients with advanced heart failure with reduced ejection fraction (HFrEF), CI has never been measured in non-advanced HFrEF. We measured CI in left ventricular (LV) endomyocardial biopsies (EMB) from patients with non-advanced HFrEF and explored CI association with systemic iron status and disease severity. Methods and results: We enrolled 80 consecutive patients with non-ischaemic HFrEF with New York Heart Association class II or III symptoms and a median (interquartile range) LV ejection fraction of 25 (18–33)%. CI was 304 (262–373) ÎŒg/g dry tissue. CI was not related to immunohistological findings or the presence of cardiotropic viral genomes in EMBs and was not related to biomarkers of systemic iron status or anaemia. Patients with CI in the lowest quartile (CIQ1) had lower body mass indices and more often presented with heart failure histories longer than 6 months than patients in the upper three quartiles (CIQ2–4). CIQ1 patients had higher serum N-terminal pro-B-type natriuretic peptide levels than CIQ2–4 patients [3566 (1513–6412) vs. 1542 (526–2811) ng/L; P = 0.005]. CIQ1 patients also had greater LV end-diastolic (P = 0.001) and end-systolic diameter indices (P = 0.003) and higher LV end-diastolic pressures (P = 0.046) than CIQ2–4 patients. Conclusion: Low CI is associated with greater disease severity in patients with non-advanced non-ischaemic HFrEF. CI is unrelated to systemic iron homeostasis. The prognostic and therapeutic implications of CI measurements in EMBs should be further explored

    Integrated analyses of growth differentiation factor-15 concentration and cardiometabolic diseases in humans

    Get PDF
    Growth differentiation factor-15 (GDF15) is a stress response cytokine that is elevated in several cardiometabolic diseases and has attracted interest as a potential therapeutic target. To further explore the association of GDF15 with human disease, we conducted a broad study into the phenotypic and genetic correlates of GDF15 concentration in up to 14,099 individuals. Assessment of 772 traits across 6610 participants in FINRISK identified associations of GDF15 concentration with a range of phenotypes including all-cause mortality, cardiometabolic disease, respiratory diseases and psychiatric disorders, as well as inflammatory markers. A meta-analysis of genome-wide association studies (GWAS) of GDF15 concentration across three different assay platforms (n=14,099) confirmed significant heterogeneity due to a common missense variant (rs1058587; p.H202D) in GDF15, potentially due to epitope-binding artefacts. After conditioning on rs1058587, statistical fine mapping identified four independent putative causal signals at the locus. Mendelian randomisation (MR) analysis found evidence of a causal relationship between GDF15 concentration and high-density lipoprotein (HDL) but not body mass index (BMI). Using reverse MR, we identified a potential causal association of BMI on GDF15 (IVW p(FDR) = 0.0040). Taken together, our data derived from human population cohorts do not support a role for moderately elevated GDF15 concentrations as a causal factor in human cardiometabolic disease but support its role as a biomarker of metabolic stress.Peer reviewe

    Growth differentiation factor 15 and cardiovascular risk: individual patient meta-analysis

    Get PDF
    AIMS: Levels of growth differentiation factor 15 (GDF-15), a cytokine secreted in response to cellular stress and inflammation, have been associated with multiple types of cardiovascular (CV) events. However, its comparative prognostic performance across different presentations of atherosclerotic cardiovascular disease (ASCVD) remains unknown. METHODS AND RESULTS: An individual patient meta-analysis was performed using data pooled from eight trials including 53 486 patients. Baseline GDF-15 concentration was analyzed as a continuous variable and using established cutpoints ( 1800 ng/L) to evaluate its prognostic performance for CV death/hospitalization for heart failure (HHF), major adverse cardiovascular events (MACE), and their components using Cox models adjusted for clinical variables and established CV biomarkers. Analyses were further stratified on ASCVD status: acute coronary syndrome (ACS), stabilized after recent ACS, and stable ASCVD. Overall, higher GDF-15 concentration was significantly and independently associated with an increased rate of CV death/HHF and MACE (P < 0.001 for each). However, while GDF-15 showed a robust and consistent independent association with CV death and HHF across all presentations of ASCVD, its prognostic association with future myocardial infarction (MI) and stroke only remained significant in patients stabilized after recent ACS or with stable ASCVD [hazard ratio (HR): 1.24, 95% confidence interval (CI): 1.17-1.31 and HR: 1.16, 95% CI: 1.05-1.28 for MI and stroke, respectively] and not in ACS (HR: 0.98, 95% CI: 0.90-1.06 and HR: 0.87, 95% CI: 0.39-1.92, respectively). CONCLUSION: Growth differentiation factor 15 consistently adds prognostic information for CV death and HHF across the spectrum of ASCVD. GDF-15 also adds prognostic information for MI and stroke beyond clinical risk factors and cardiac biomarkers but not in the setting of ACS

    Risk stratification in critically ill patients: GDF-15 scores in adult respiratory distress syndrome

    No full text

    Fulminant parvovirus B19 myocarditis after chemotherapy: full recovery after antiviral therapy with tenofovir

    No full text
    Background!#!Right ventricular pacing (RVP) may cause electrical and mechanical desynchrony leading to impaired left ventricular ejection fraction (LVEF). We investigated the outcomes of RVP with His bundle pacing (HBP) and left bundle branch pacing (LBBP) for patients requiring a de novo permanent pacemaker (PPM) for bradyarrhythmia.!##!Methods and results!#!Systematic review of randomized clinical trials and observational studies comparing HBP or LBP with RVP for de novo PPM implantation between 01 January 2013 and 17 November 2020 was performed. Random and fixed effects meta-analyses of the effect of pacing technology on outcomes were performed. Study outcomes included all-cause mortality, heart failure hospitalization (HFH), LVEF, QRS duration, lead revision, atrial fibrillation, procedure parameters, and pacing metrics. Overall, 9 studies were included (6 observational, 3 randomised). HBP compared with RVP was associated with decreased HFH (risk ratio [RR] 0.68, 95% confidence interval [CI] 0.49-0.94), preservation of LVEF (mean difference [MD] 0.81, 95% CI - 1.23 to 2.85 vs. - 5.72, 95% CI - 7.64 to -3.79), increased procedure duration (MD 15.17 min, 95% CI 11.30-19.04), and increased lead revisions (RR 5.83, 95% CI 2.17-15.70, p = 0.0005). LBBP compared with RVP was associated with shorter paced QRS durations (MD 5.6 ms, 95% CI - 6.4 to 17.6) vs. (51.0 ms, 95% CI 39.2-62.9) and increased procedure duration (MD 37.78 min, 95% CI 20.04-55.51).!##!Conclusion!#!Of the limited studies published, this meta-analysis found that HBP and LBBP were superior to RVP in maintaining physiological ventricular activation as an initial pacing strategy

    Safety and efficacy of a wireless pulmonary artery pressure sensor: primary endpoint results of the SIRONA 2 clinical trial

    No full text
    Abstract Aims Implantable pulmonary artery pressure (PAP) sensors have been shown to reduce heart failure hospitalizations (HFH) in selected patients. The goal of this study was to evaluate the safety and efficacy of a novel wireless PAP monitoring system in patients with heart failure (HF). Methods and results This is a prospective, multi‐centre, open‐label, single‐arm trial evaluating the safety and efficacy of the Cordellaℱ PA Sensor System including the comprehensive Cordellaℱ Heart Failure System (CHFS) in patients with New York Heart Association (NYHA) Class III heart failure with a heart failure hospitalization and/or increase of N‐terminal pro‐Brain Natriuretic Peptide (NT‐proBNP) within 12 months of enrolment. The primary efficacy endpoint was the accuracy of PA sensor mean PAP measurements, compared with fluid‐filled catheter mean PAP measurements obtained by standard right heart catheterization (RHC) at 90 days post‐implant, assessed in all patients with a successful implant. The primary safety endpoint was freedom from adverse events associated with use of the Cordella PA Sensor System through 30 days post‐implant, assessed in all patients who entered the cath lab for PA sensor implant. The PA sensor was successfully implanted in 70 patients. Equivalence between the PA sensor and RHC for mean pulmonary artery pressures was excellent with measurements confined within the equivalence bounds of −4.0 to 4.0 mmHg (mean PAP: 0.0 to 2.9 mmHg, P = 0.003). The device safety profile was excellent with 98.6% freedom from Device System Related Complications, defined as invasive treatment, device explant or death. There were no pressure sensor failures. Patients' adherence to daily measurement transmissions of PAP and vital signs was 94%. Conclusions This trial supports the safety and efficacy of the Cordella PA Sensor System and in conjunction with the CHFS enables comprehensive HF management in NYHA class III heart failure patients
    • 

    corecore