4 research outputs found
Clustering Users Based on Hearing Aid Use: An Exploratory Analysis of Real-World Data
While the assessment of hearing aid use has traditionally relied on subjective self-reported measures, smartphone-connected hearing aids enable objective data logging from a large number of users. Objective data logging allows to overcome the inaccuracy of self-reported measures. Moreover, data logging enables assessing hearing aid use with a greater temporal resolution and longitudinally, making it possible to investigate hourly patterns of use and to account for the day-to-day variability. This study aims to explore patterns of hearing aid use throughout the day and assess whether clusters of users with similar use patterns can be identified. We did so by analyzing objective hearing aid use data logged from 15,905 real-world users over a 4-month period. Firstly, we investigated the daily amount of hearing aid use and its within-user and between-user variability. We found that users, on average, used the hearing aids for 10.01 h/day, exhibiting a substantial between-user (SD = 2.76 h) and within-user (SD = 3.88 h) variability. Secondly, we examined hearing aid use hourly patterns by clustering 453,612 logged days into typical days of hearing aid use. We identified three typical days of hearing aid use: full day (44% of days), afternoon (27%), and sporadic evening (26%) day of hearing aid use. Thirdly, we explored the usage patterns of the hearing aid users by clustering the users based on the proportion of time spent in each of the typical days of hearing aid use. We found three distinct user groups, each characterized by a predominant (i.e., experienced ~60% of the time) typical day of hearing aid use. Notably, the largest user group (49%) of users predominantly had full days of hearing aid use. Finally, we validated the user clustering by training a supervised classification ensemble to predict the cluster to which each user belonged. The high accuracy achieved by the supervised classifier ensemble (~86%) indicated valid user clustering and showed that such a classifier can be successfully used to group new hearing aid users in the future. This study provides a deeper insight into the adoption of hearing care treatments and paves the way for more personalized solutions
Investigating the Provision and Context of Use of Hearing Aid Listening Programs From Real-world Data: Observational Study
BackgroundListening programs enable hearing aid (HA) users to change device settings for specific listening situations and thereby personalize their listening experience. However, investigations into real-world use of such listening programs to support clinical decisions and evaluate the success of HA treatment are lacking.
ObjectiveWe aimed to investigate the provision of listening programs among a large group of in-market HA users and the context in which the programs are typically used.
MethodsFirst, we analyzed how many and which programs were provided to 32,336 in-market HA users. Second, we explored 332,271 program selections from 1312 selected users to investigate the sound environments in which specific programs were used and whether such environments reflect the listening intent conveyed by the name of the used program. Our analysis was based on real-world longitudinal data logged by smartphone-connected HAs.
ResultsIn our sample, 57.71% (18,663/32,336) of the HA users had programs for specific listening situations, which is a higher proportion than previously reported, most likely because of the inclusion criteria. On the basis of association rule mining, we identified a primary additional listening program, Speech in Noise, which is frequent among users and often provided when other additional programs are also provided. We also identified 2 secondary additional programs (Comfort and Music), which are frequent among users who get ≥3 programs and usually provided in combination with Speech in Noise. In addition, 2 programs (TV and Remote Mic) were related to the use of external accessories and not found to be associated with other programs. On average, users selected Speech in Noise, Comfort, and Music in louder, noisier, and less-modulated (all P<.01) environments compared with the environment in which they selected the default program, General. The difference from the sound environment in which they selected General was significantly larger in the minutes following program selection than in the minutes preceding it.
ConclusionsThis study provides a deeper insight into the provision of listening programs on a large scale and demonstrates that additional listening programs are used as intended and according to the sound environment conveyed by the program name
Table_1_Daily sound exposure of hearing aids users during COVID-19 pandemic in Europe.pdf
IntroductionThis study aimed to investigate the daily sound exposure of hearing aid (HA) users during the COVID-19 pandemic, with a specific focus on the impact of different governance intervention levels.MethodsModern HA technology was employed to measure and compare the sound exposure of HA users in three distinct periods: pre-pandemic, and two 14-day periods during the pandemic, corresponding to varying levels of governance interventions. The study sample comprised a total of 386 HA users in Europe during the pandemic, with daily sound exposure data collected as part of the main dataset.ResultsThe results revealed that, during the pandemic, the equivalent continuous sound pressure level (SPL) experienced by HA users decreased, while the signal-to-noise ratio (SNR) increased compared to the pre-pandemic period. Notably, this impact was found to be more pronounced (p DiscussionThis study highlights the changes in daily sound exposure experienced by HA users during the COVID-19 pandemic, particularly influenced by the extent of governance interventions that restricted social activities. These findings emphasize the importance of considering the effects of pandemic-related governance measures on the sound environments of HA users and have implications for audiological interventions and support strategies during similar crises.</p