16 research outputs found

    Genome-wide identification and analysis of the IQM gene family in soybean

    Get PDF
    IQM, a plant-specific calmodulin-binding protein, plays multiple roles in plant growth and development. Although a comprehensive analysis has been carried out on the IQM family genes in Arabidopsis and rice, the number and functions of IQM genes in other species have not been explored. In this study, we identified 15 members of the soybean (Glycine max) IQM gene family using BLASTP tools. These members were distributed on 12 soybean chromosomes and constitute six pairs caused by fragment duplication events. According to phylogeny, the 15 genes were divided into three subfamilies (I, II, and III), and members of the same subfamily had similar gene and protein structures. Yeast two-hybrid experiments revealed that the IQ motif is critical for the binding of GmIQM proteins to GmCaM, and its function is conserved in soybean, Arabidopsis, and rice. Based on real-time PCR, the soybean IQM genes were strongly induced by PEG and NaCl, suggesting their important biological functions in abiotic stress responses. Overall, this genome-wide analysis of the soybean IQM gene family lays a solid theoretical foundation for further research on the functions of GmIQM genes and could serve as a reference for the improvement and breeding of soybean stress resistance traits

    Research on the Rapid and Accurate Positioning and Orientation Approach for Land Missile-Launching Vehicle

    No full text
    Getting a land vehicle’s accurate position, azimuth and attitude rapidly is significant for vehicle based weapons’ combat effectiveness. In this paper, a new approach to acquire vehicle’s accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle’s accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm’s iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system’s working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min

    The <i>LHT</i> Gene Family in Rice: Molecular Characterization, Transport Functions and Expression Analysis

    No full text
    Amino acid transporters (AATs) are integral membrane proteins and play important roles in plant growth and development as well as environmental responses. In contrast to the amino acid permease (AAP) subfamily, functional studies of the lysine and histidine transporter (LHT) subfamily have not been made in rice. In the current study, six LHT genes were found in the rice genome. To further investigate the functions of these genes, analyses were performed regarding gene and protein structures, chromosomal locations, evolutionary relationships, cis-acting elements of promoters, gene expression, and yeast complementation. We found that the six OsLHT genes are distributed on 4 out of the 12 chromosomes and that the six OsLHT genes were grouped into two clusters based on the phylogenetic analysis. Protein structure analyses showed that each OsLHT protein has 11 helical transmembrane domains. Yeast complementation assays showed that these OsLHT genes have conserved transport substrates within each cluster. The four members from cluster 1 showed broad amino acid selectivity, while OsLHT5 and OsLHT6 may transport other substrates besides amino acids. Additionally, quantitative real-time PCR analysis of the six OsLHT genes revealed that they have different expression patterns at different developmental stages and in different tissues. It also revealed that some OsLHT genes were responsive to PEG, NaCl and cold treatments, indicating their critical roles in abiotic stress response. Our results will be useful for further characterizing the crucial biological functions of rice LHT genes

    Evaluation of the water resource carrying capacity in Heilongjiang, eastern China, based on the improved TOPSIS model

    No full text
    Assessments and analyses of the water resource carrying capacity provide practical guidance for regional water resource planning and water resource management. The water resource carrying capacity index system and the corresponding level criteria are constructed from the perspective of the carrying capacity subsystem. Additionally, a water resource carrying capacity model is constructed using the improved TOPSIS method. Finally, a comprehensive evaluation and analysis of the water resource carrying capacity in the study area from 2009 to 2018 is conducted, with the eastern part of Heilongjiang as a case study. The results show that the combination of the improved AHP and the anti-entropy weighting method can avoid the bias caused by subjective factors in the traditional AHP and the bias caused by the randomness of data in the entropy weighting method, yielding accurate estimates of the water resource carrying capacity. A new method of assigning weights in TOPSIS models is developed. In addition, the water resource carrying capacity of the studied cities is generally in state III (Moderate) in the eastern region of Heilongjiang, and the multiyear average value obtained from the comprehensive evaluation is 0.4581. The Qitaihe and Hegang areas have higher water resource carrying capacities than other areas. Overall, water resource and societal factors have an obvious influence on the water resource carrying capacity in the eastern region of Heilongjiang, and these factors vary in different areas. The water supply modulus and proportion of water used for agricultural irrigation have the greatest effects on the water resource carrying capacity in the study area

    Image_2_Identification of two quantitative genes controlling soybean flowering using bulked-segregant analysis and genetic mapping.jpeg

    No full text
    Photoperiod responsiveness is important to soybean production potential and adaptation to local environments. Varieties from temperate regions generally mature early and exhibit extremely low yield when grown under inductive short-day (SD) conditions. The long-juvenile (LJ) trait is essentially a reduction and has been introduced into soybean cultivars to improve yield in tropical environments. In this study, we used next-generation sequencing (NGS)-based bulked segregant analysis (BSA) to simultaneously map qualitative genes controlling the LJ trait in soybean. We identified two genomic regions on scaffold_32 and chromosome 18 harboring loci LJ32 and LJ18, respectively. Further, we identified LJ32 on the 228.7-kb scaffold_32 as the soybean pseudo-response-regulator gene Tof11 and LJ18 on a 301-kb region of chromosome 18 as a novel PROTEIN FLOWERING LOCUS T-RELATED gene, Glyma.18G298800. Natural variants of both genes contribute to LJ trait regulation in tropical regions. The molecular identification and functional characterization of Tof11 and LJ18 will enhance understanding of the molecular mechanisms underlying the LJ trait and provide useful genetic resources for soybean molecular breeding in tropical regions.</p

    DataSheet_1_Identification of two quantitative genes controlling soybean flowering using bulked-segregant analysis and genetic mapping.xlsx

    No full text
    Photoperiod responsiveness is important to soybean production potential and adaptation to local environments. Varieties from temperate regions generally mature early and exhibit extremely low yield when grown under inductive short-day (SD) conditions. The long-juvenile (LJ) trait is essentially a reduction and has been introduced into soybean cultivars to improve yield in tropical environments. In this study, we used next-generation sequencing (NGS)-based bulked segregant analysis (BSA) to simultaneously map qualitative genes controlling the LJ trait in soybean. We identified two genomic regions on scaffold_32 and chromosome 18 harboring loci LJ32 and LJ18, respectively. Further, we identified LJ32 on the 228.7-kb scaffold_32 as the soybean pseudo-response-regulator gene Tof11 and LJ18 on a 301-kb region of chromosome 18 as a novel PROTEIN FLOWERING LOCUS T-RELATED gene, Glyma.18G298800. Natural variants of both genes contribute to LJ trait regulation in tropical regions. The molecular identification and functional characterization of Tof11 and LJ18 will enhance understanding of the molecular mechanisms underlying the LJ trait and provide useful genetic resources for soybean molecular breeding in tropical regions.</p

    Image_6_Identification of two quantitative genes controlling soybean flowering using bulked-segregant analysis and genetic mapping.jpeg

    No full text
    Photoperiod responsiveness is important to soybean production potential and adaptation to local environments. Varieties from temperate regions generally mature early and exhibit extremely low yield when grown under inductive short-day (SD) conditions. The long-juvenile (LJ) trait is essentially a reduction and has been introduced into soybean cultivars to improve yield in tropical environments. In this study, we used next-generation sequencing (NGS)-based bulked segregant analysis (BSA) to simultaneously map qualitative genes controlling the LJ trait in soybean. We identified two genomic regions on scaffold_32 and chromosome 18 harboring loci LJ32 and LJ18, respectively. Further, we identified LJ32 on the 228.7-kb scaffold_32 as the soybean pseudo-response-regulator gene Tof11 and LJ18 on a 301-kb region of chromosome 18 as a novel PROTEIN FLOWERING LOCUS T-RELATED gene, Glyma.18G298800. Natural variants of both genes contribute to LJ trait regulation in tropical regions. The molecular identification and functional characterization of Tof11 and LJ18 will enhance understanding of the molecular mechanisms underlying the LJ trait and provide useful genetic resources for soybean molecular breeding in tropical regions.</p

    Image_1_Identification of two quantitative genes controlling soybean flowering using bulked-segregant analysis and genetic mapping.jpeg

    No full text
    Photoperiod responsiveness is important to soybean production potential and adaptation to local environments. Varieties from temperate regions generally mature early and exhibit extremely low yield when grown under inductive short-day (SD) conditions. The long-juvenile (LJ) trait is essentially a reduction and has been introduced into soybean cultivars to improve yield in tropical environments. In this study, we used next-generation sequencing (NGS)-based bulked segregant analysis (BSA) to simultaneously map qualitative genes controlling the LJ trait in soybean. We identified two genomic regions on scaffold_32 and chromosome 18 harboring loci LJ32 and LJ18, respectively. Further, we identified LJ32 on the 228.7-kb scaffold_32 as the soybean pseudo-response-regulator gene Tof11 and LJ18 on a 301-kb region of chromosome 18 as a novel PROTEIN FLOWERING LOCUS T-RELATED gene, Glyma.18G298800. Natural variants of both genes contribute to LJ trait regulation in tropical regions. The molecular identification and functional characterization of Tof11 and LJ18 will enhance understanding of the molecular mechanisms underlying the LJ trait and provide useful genetic resources for soybean molecular breeding in tropical regions.</p
    corecore