11 research outputs found

    Comparison of diffusion-weighted MRI acquisition techniques for normal pancreas at 3.0 Tesla

    Get PDF
    PURPOSEWe aimed to optimize diffusion-weighted imaging (DWI) acquisitions for normal pancreas at 3.0 Tesla.MATERIALS AND METHODSThirty healthy volunteers were examined using four DWI acquisition techniques with b values of 0 and 600 s/mm2 at 3.0 Tesla, including breath-hold DWI, respiratory-triggered DWI, respiratory-triggered DWI with inversion recovery (IR), and free-breathing DWI with IR. Artifacts, signal-to-noise ratio (SNR) and apparent diffusion coefficient (ADC) of normal pancreas were statistically evaluated among different DWI acquisitions.RESULTSStatistical differences were noticed in artifacts, SNR, and ADC values of normal pancreas among different DWI acquisitions by ANOVA (P < 0.001). Normal pancreas imaging had the lowest artifact in respiratory-triggered DWI with IR, the highest SNR in respiratory-triggered DWI, and the highest ADC value in free-breathing DWI with IR. The head, body, and tail of normal pancreas had statistically different ADC values on each DWI acquisition by ANOVA (P < 0.05).CONCLUSIONThe highest image quality for normal pancreas was obtained using respiratory-triggered DWI with IR. Normal pancreas displayed inhomogeneous ADC values along the head, body, and tail structures

    Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is a common, highly lethal disease with a rising incidence. MUC1 is a tumor-associated antigen that is over-expressed in pancreatic adenocarcinoma. Active immunotherapy that targets MUC1 could have great treatment value. Here we investigated the preventive and therapeutic effect of a MUC1 DNA vaccine on the pancreatic cancer.</p> <p>Methods</p> <p>MUC1-various tandem repeat units(VNTR) DNA vaccine was produced by cloning one repeat of VNTR and inserting the cloned gene into the pcDNA3.1. In the preventive group, female C57BL/6 mice were immunized with the vaccine, pcDNA3.1 or PBS; and challenged with panc02-MUC1 or panc02 cell. In the therapeutic group the mice were challenged with panc02-MUC1 or panc02 cell, and then immunized with the vaccine, pcDNA3.1 or PBS. The tumor size and the survival time of the animals were compared between these groups.</p> <p>Results</p> <p>The DNA vaccine pcDNA3.1-VNTR could raise cytotoxic T lymphocyte (CTL) activity specific for MUC1. In the preventive experiment, the mice survival time was significantly longer in the vaccine group than in the control groups (<it>P </it>< 0.05). In the therapeutic experiment, the DNA vaccine prolonged the survival time of the panc02-MUC1-bearing mice (<it>P </it>< 0.05). In both the preventive and therapeutic experiments, the tumor size was significantly less in the vaccine group than in the control groups (<it>P </it>< 0.05). This pcDNA3.1-VNTR vaccine, however, could not prevent the mice attacked by panc02 cells and had no therapeutic effect on the mice attacked by panc02 cells.</p> <p>Conclusion</p> <p>The MUC1 DNA vaccine pcDNA3.1-VNTR could induce a significant MUC1-specific CTL response; and had both prophylactic and therapeutic effect on panc02-MUC1 tumors. This vaccine might be used as a new adjuvant strategy against pancreatic cancer.</p

    Comprehensive Analysis of Immunoinhibitors Identifies LGALS9 and TGFBR1 as Potential Prognostic Biomarkers for Pancreatic Cancer

    No full text
    Pancreatic cancer (PC) is one of the most deadly cancers worldwide. To uncover the unknown novel biomarker used to indicate early diagnosis and prognosis in the molecular therapeutic field of PC is extremely of importance. Accumulative evidences indicated that aberrant expression or activation of immunoinhibitors is a common phenomenon in malignances, and significant associations have been noted between immunoinhibitors and tumorigenesis or progression in a wide range of cancers. However, the expression patterns and exact roles of immunoinhibitors contributing to tumorigenesis and progression of pancreatic cancer (PC) have not yet been elucidated clearly. In this study, we investigated the distinct expression and prognostic value of immunoinhibitors in patients with PC by analyzing a series of databases, including TISIDB, GEPIA, cBioPortal, and Kaplan-Meier plotter database. The mRNA expression levels of IDO1, CSF1R, VTCN1, KDR, LGALS9, TGFBR1, TGFB1, IL10RB, and PVRL2 were found to be significantly upregulated in patients with PC. Aberrant expression of TGFBR1, VTCN1, and LGALS9 was found to be associated with the worse outcomes of patients with PC. Bioinformatics analysis demonstrated that LGALS9 was involved in regulating the type I interferon signaling pathway, interferon-gamma-mediated signaling pathway, RIG-I-like receptor signaling pathway, NF-kappa B signaling pathway, cytosolic DNA-sensing pathway, and TNF signaling pathway. And TGFB1 was related to mesoderm formation, cell matrix adhesion, TGF-beta signaling pathway, and Hippo signaling pathway. These results suggested that LGALS9 and TGFBR1 might serve as potential prognostic biomarkers and targets for PC

    HEATR1 Deficiency Promotes Chemoresistance via Upregulating ZNF185 and Downregulating SMAD4 in Pancreatic Cancer

    No full text
    Objective. To discover the correlated gene with HEATR1 in regulating chemoresistance of gemcitabine. Methods. Gene chip analysis was performed to find out differential genes between HEATR1-KD and control groups. The top 20 genes were subjected to high-content screening, and functional assay was implemented. Gene expression profiling was carried out to find the downstream target. Immunohistochemistry and survival analysis were performed. Results. ZNF185 fold change (4.5285) was the most significant between the HEATR1-KD and control groups. Knocking down ZNF185 could promote the chemosensitivity, apoptosis, and proliferative inhibition, with SMAD4 significantly upregulated. Patients with high HEATR1 and SMAD4 or low ZNF185 exhibited better survival. Conclusion. HEATR1, ZNF185, and SMAD4 could affect the chemosensitivity of gemcitabine and may be the indicators of gemcitabine selection in the chemotherapy of pancreatic cancer

    Clinical relevance of different WHO grade 3 pancreatic neuroendocrine neoplasms based on morphology

    No full text
    Purpose: Emerging evidence suggests G3 pancreatic neuroendocrine neoplasms (pNENs) present heterogeneous morphology and biology. The 2017 WHO classification has introduced a new category of well-differentiated pancreatic neuroendocrine tumors (WD-pNETs) G3, compared with poorly differentiated pancreatic neuroendocrine carcinomas (PD-pNECs) G3. We aim to analysis the demographics and outcomes of patients with resectable 2017 WHO G3 pNENs to facilitate the distinction between two entities. Methods: The multi-institutional retrospective cohort involving 57 surgically treated patients affected by 2017 WHO G3 pNENs were morphologically identified and clinically analyzed. Patients having WD-pNETs G3 and those having PD-pNECs G3 were compared. Results: Thirty patients had WD-pNETs and 27 patients had PD-pNECs. The distributions of Ki-67 and mitotic count in patients with PD-pNECs or WD-pNETs showed remarkable disparities. ROC indicated cut-off value of Ki-67 was 45. PD-pNECs were more common in patients with elevated Ki-67 and mitotic count, advanced AJCC TNM stage, vascular invasion, regional lymph-node metastases, elevated NSE and decreased CgA levels compared with WD-pNETs (P < 0.05). The association between 2017 WHO G3 grade and TTR was statistically significant (P < 0.05). Univariate analysis indicated OS rates were associated with morphologic differentiation (WD-pNETs vs PD-pNECs), Ki-67, TNM staging, synchronous distant metastases, initial treatments, vascular invasion, regional lymph nodes metastases, mitotic count and age (P < 0.05). Multivariate analyses illustrated Ki-67, differentiation, TNM staging and vascular invasion were independent predictors (P < 0.05). Conclusions: PD-pNECs G3 presented malignant biological behavior and dismal outcome compared with WD-pNETs G3. These findings challenge 2010 WHO classification and suggest the categorization can be improved by refined tumor grading

    CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer

    No full text
    Abstract Background The prognosis of pancreatic ductal adenocarcinoma (PDAC) remains poor due to the difficulty of disease diagnosis and therapy. Immunotherapy has had robust performance against several malignancies, including PDAC. In this study, we aim to analyze the expression of CD8 and FoxP3 on T lymphocytes and TGF-β expression in tumor tissues, and then analyze the possible clinical significance of these finding in order to find a novel effective immunotherapy target in PDAC using a murine model. Methods A tissue microarray using patient PDAC samples was stained and analyzed for associations with clinicopathological characteristics. A preclinical murine model administrated with various immunotherapies were analyzed by growth inhibitor, flow cytometry, enzyme-linked immuno sorbent assay and immunohistochemistry. Results The infiltrating FoxP3+ regulatory T cells (Tregs) in tumor tissues were associated with survival, while CD8+ tumor infiltrating lymphocytes (TILs) were not. Considering the drawbacks of these measure alone, the number of CD8+ and FoxP3+ T cells were combined to create a new estimated value—integrated immune ratio (IIR), which showed excellent validity in survival risk stratification. IIR was further verified as an independent prognostic factor according to multivariate analysis as well as TGF-β expression. Association between TGF-β expression and infiltrating Tregs was also verified. Then, in our preclinical murine model, CD25 and TGF-β combination blockade had a higher tumor growth inhibitor value. This combination therapy significantly depleted periphery and intra-tumor FoxP3+ Tregs while increasing intra-tumor CD8+ TILs levels compared to controls or anti-TGF-β monotherapy (p < 0.05). Anti-CD25 monotherapy alone also had the ability to deplete periphery and intra-tumor Tregs (p < 0.05). The excretion of intra-tumor IL-10, TGF-β was notably lower but higher IFN-γ excretion in this combination immunotherapy. Such combination immunotherapy was further confirmed to synergize with anti-PD-1 monotherapy to improve tumor growth inhibition and cure rates. Conclusions The combination of CD25, TGF-β and PD-1 blockade plays a potentially effective role in inhibiting tumor formation and progression. Our results also provide a strong rational strategy for use of IIR in future immunotherapy clinical trials

    Chk1 inhibitor SCH 900776 enhances the antitumor activity of MLN4924 on pancreatic cancer

    No full text
    <p>MLN4924 inhibits the cullin-RING ligases mediated ubiquitin-proteasome system, and has showed antitumor activities in preclinical studies, but its effects and mechanisms on pancreatic cancer (PC) remains elusive. We found that MLN4924 inhibited the proliferation and clonogenicity of PC cells, caused DNA damage, particularly double-strand breaks, and leaded to Chk1 activation and cell-cycle arrest. Chk1 inhibitor SCH 900776 alone exhibited minimal cytotoxicity, and caused no DNA damage on PC cells. But in the combination therapy, SCH 900776 enhanced the cytotoxicity and DNA damage caused by MLN4924, likely by abrogating G2/M arrest and promoting DNA re-replication. <i>In vivo</i> study on a xenograft PC mouse model also showed that SCH 900776 increased the efficacy of MLN4924. We also evaluated the level of NEDD8-activating enzyme (NAE), the direct target of MLN4924, and found that NAE level was elevated in PC tissues compared with normal pancreas, but was irrelevant with prognosis. Our findings provide the preclinical evidence and the rationale of the combination therapy of MLN4924 with SCH 900776 or other Chk1 inhibitors to treat PC.</p
    corecore