23 research outputs found

    All-optical multimode fibre photoacoustic endomicroscopy with scalable spatial resolution and field-of-view

    Get PDF
    An all-optical, forward-viewing, optical-resolution photoacoustic endomicroscopy probe was developed for guiding minimally invasive procedures. The probe comprises a multimode fibre for the delivery of excitation laser via wavefront shaping, and a fibre-optic ultrasound sensor based on a plane-concave microresonator at the tip of a single-mode fibre. High-resolution photoacoustic microscopy images of mouse red blood cells and mouse ear vasculature were acquired, and the high scalability of the probe in terms of field-of-view and spatial resolution was demonstrated. The ultrathin photoacoustic endomicroscopy probe promises to guide minimally invasive surgery by providing both molecular and microstructural information

    Ultrathin, high-speed, all-optical photoacoustic endomicroscopy probe for guiding minimally invasive surgery

    Get PDF
    Photoacoustic (PA) endoscopy has shown significant potential for clinical diagnosis and surgical guidance. Multimode fibres (MMFs) are becoming increasingly attractive for the development of miniature endoscopy probes owing to their ultrathin size, low cost and diffraction-limited spatial resolution enabled by wavefront shaping. However, current MMF-based PA endomicroscopy probes are either limited by a bulky ultrasound detector or a low imaging speed that hindered their usability. In this work, we report the development of a highly miniaturised and high-speed PA endomicroscopy probe that is integrated within the cannula of a 20 gauge medical needle. This probe comprises a MMF for delivering the PA excitation light and a single-mode optical fibre with a plano-concave microresonator for ultrasound detection. Wavefront shaping with a digital micromirror device enabled rapid raster-scanning of a focused light spot at the distal end of the MMF for tissue interrogation. High-resolution PA imaging of mouse red blood cells covering an area 100 µm in diameter was achieved with the needle probe at ∼3 frames per second. Mosaicing imaging was performed after fibre characterisation by translating the needle probe to enlarge the field-of-view in real-time. The developed ultrathin PA endomicroscopy probe is promising for guiding minimally invasive surgery by providing functional, molecular and microstructural information of tissue in real-time

    Intraoperative Needle Tip Tracking with an Integrated Fibre-Optic Ultrasound Sensor

    Get PDF
    Ultrasound is an essential tool for guidance of many minimally-invasive surgical and interventional procedures, where accurate placement of the interventional device is critical to avoid adverse events. Needle insertion procedures for anaesthesia, fetal medicine and tumour biopsy are commonly ultrasound-guided, and misplacement of the needle may lead to complications such as nerve damage, organ injury or pregnancy loss. Clear visibility of the needle tip is therefore critical, but visibility is often precluded by tissue heterogeneities or specular reflections from the needle shaft. This paper presents the in vitro and ex vivo accuracy of a new, real-time, ultrasound needle tip tracking system for guidance of fetal interventions. A fibre-optic, Fabry-Pérot interferometer hydrophone is integrated into an intraoperative needle and used to localise the needle tip within a handheld ultrasound field. While previous, related work has been based on research ultrasound systems with bespoke transmission sequences, the new system—developed under the ISO 13485 Medical Devices quality standard—operates as an adjunct to a commercial ultrasound imaging system and therefore provides the image quality expected in the clinic, superimposing a cross-hair onto the ultrasound image at the needle tip position. Tracking accuracy was determined by translating the needle tip to 356 known positions in the ultrasound field of view in a tank of water, and by comparison to manual labelling of the the position of the needle in B-mode US images during an insertion into an ex vivo phantom. In water, the mean distance between tracked and true positions was 0.7 ± 0.4 mm with a mean repeatability of 0.3 ± 0.2 mm. In the tissue phantom, the mean distance between tracked and labelled positions was 1.1 ± 0.7 mm. Tracking performance was found to be independent of needle angle. The study demonstrates the performance and clinical compatibility of ultrasound needle tracking, an essential step towards a first-in-human study
    corecore