189 research outputs found

    Multi-armed Bandit Learning on a Graph

    Full text link
    The multi-armed bandit(MAB) problem is a simple yet powerful framework that has been extensively studied in the context of decision-making under uncertainty. In many real-world applications, such as robotic applications, selecting an arm corresponds to a physical action that constrains the choices of the next available arms (actions). Motivated by this, we study an extension of MAB called the graph bandit, where an agent travels over a graph trying to maximize the reward collected from different nodes. The graph defines the freedom of the agent in selecting the next available nodes at each step. We assume the graph structure is fully available, but the reward distributions are unknown. Built upon an offline graph-based planning algorithm and the principle of optimism, we design an online learning algorithm that balances long-term exploration-exploitation using the principle of optimism. We show that our proposed algorithm achieves O(STlog(T)+DSlogT)O(|S|\sqrt{T}\log(T)+D|S|\log T) learning regret, where S|S| is the number of nodes and DD is the diameter of the graph, which is superior compared to the best-known reinforcement learning algorithms under similar settings. Numerical experiments confirm that our algorithm outperforms several benchmarks. Finally, we present a synthetic robotic application modeled by the graph bandit framework, where a robot moves on a network of rural/suburban locations to provide high-speed internet access using our proposed algorithm

    Non-asymptotic System Identification for Linear Systems with Nonlinear Policies

    Full text link
    This paper considers a single-trajectory system identification problem for linear systems under general nonlinear and/or time-varying policies with i.i.d. random excitation noises. The problem is motivated by safe learning-based control for constrained linear systems, where the safe policies during the learning process are usually nonlinear and time-varying for satisfying the state and input constraints. In this paper, we provide a non-asymptotic error bound for least square estimation when the data trajectory is generated by any nonlinear and/or time-varying policies as long as the generated state and action trajectories are bounded. This significantly generalizes the existing non-asymptotic guarantees for linear system identification, which usually consider i.i.d. random inputs or linear policies. Interestingly, our error bound is consistent with that for linear policies with respect to the dependence on the trajectory length, system dimensions, and excitation levels. Lastly, we demonstrate the applications of our results by safe learning with robust model predictive control and provide numerical analysis

    Distributed Information-based Source Seeking

    Full text link
    In this paper, we design an information-based multi-robot source seeking algorithm where a group of mobile sensors localizes and moves close to a single source using only local range-based measurements. In the algorithm, the mobile sensors perform source identification/localization to estimate the source location; meanwhile, they move to new locations to maximize the Fisher information about the source contained in the sensor measurements. In doing so, they improve the source location estimate and move closer to the source. Our algorithm is superior in convergence speed compared with traditional field climbing algorithms, is flexible in the measurement model and the choice of information metric, and is robust to measurement model errors. Moreover, we provide a fully distributed version of our algorithm, where each sensor decides its own actions and only shares information with its neighbors through a sparse communication network. We perform intensive simulation experiments to test our algorithms on large-scale systems and physical experiments on small ground vehicles with light sensors, demonstrating success in seeking a light source

    Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle Recognition

    Full text link
    Vehicle recognition is a fundamental problem in SAR image interpretation. However, robustly recognizing vehicle targets is a challenging task in SAR due to the large intraclass variations and small interclass variations. Additionally, the lack of large datasets further complicates the task. Inspired by the analysis of target signature variations and deep learning explainability, this paper proposes a novel domain alignment framework named the Hierarchical Disentanglement-Alignment Network (HDANet) to achieve robustness under various operating conditions. Concisely, HDANet integrates feature disentanglement and alignment into a unified framework with three modules: domain data generation, multitask-assisted mask disentanglement, and domain alignment of target features. The first module generates diverse data for alignment, and three simple but effective data augmentation methods are designed to simulate target signature variations. The second module disentangles the target features from background clutter using the multitask-assisted mask to prevent clutter from interfering with subsequent alignment. The third module employs a contrastive loss for domain alignment to extract robust target features from generated diverse data and disentangled features. Lastly, the proposed method demonstrates impressive robustness across nine operating conditions in the MSTAR dataset, and extensive qualitative and quantitative analyses validate the effectiveness of our framework

    A Secure Mechanism for Big Data Collection in Large Scale Internet of Vehicle

    Get PDF
    As an extension for Internet of Things (IoT), Internet of Vehicles (IoV) achieves unified management in smart transportation area. With the development of IoV, an increasing number of vehicles are connected to the network. Large scale IoV collects data from different places and various attributes, which conform with heterogeneous nature of big data in size, volume, and dimensionality. Big data collection between vehicle and application platform becomes more and more frequent through various communication technologies, which causes evolving security attack. However, the existing protocols in IoT cannot be directly applied in big data collection in large scale IoV. The dynamic network structure and growing amount of vehicle nodes increases the complexity and necessary of the secure mechanism. In this paper, a secure mechanism for big data collection in large scale IoV is proposed for improved security performance and efficiency. To begin with, vehicles need to register in the big data center to connect into the network. Afterwards, vehicles associate with big data center via mutual authentication and single sign-on algorithm. Two different secure protocols are proposed for business data and confidential data collection. The collected big data is stored securely using distributed storage. The discussion and performance evaluation result shows the security and efficiency of the proposed secure mechanism

    Gaussian Max-Value Entropy Search for Multi-Agent Bayesian Optimization

    Full text link
    We study the multi-agent Bayesian optimization (BO) problem, where multiple agents maximize a black-box function via iterative queries. We focus on Entropy Search (ES), a sample-efficient BO algorithm that selects queries to maximize the mutual information about the maximum of the black-box function. One of the main challenges of ES is that calculating the mutual information requires computationally-costly approximation techniques. For multi-agent BO problems, the computational cost of ES is exponential in the number of agents. To address this challenge, we propose the Gaussian Max-value Entropy Search, a multi-agent BO algorithm with favorable sample and computational efficiency. The key to our idea is to use a normal distribution to approximate the function maximum and calculate its mutual information accordingly. The resulting approximation allows queries to be cast as the solution of a closed-form optimization problem which, in turn, can be solved via a modified gradient ascent algorithm and scaled to a large number of agents. We demonstrate the effectiveness of Gaussian max-value Entropy Search through numerical experiments on standard test functions and real-robot experiments on the source-seeking problem. Results show that the proposed algorithm outperforms the multi-agent BO baselines in the numerical experiments and can stably seek the source with a limited number of noisy observations on real robots.Comment: 10 pages, 9 figure

    EffLiFe: Efficient Light Field Generation via Hierarchical Sparse Gradient Descent

    Full text link
    With the rise of Extended Reality (XR) technology, there is a growing need for real-time light field generation from sparse view inputs. Existing methods can be classified into offline techniques, which can generate high-quality novel views but at the cost of long inference/training time, and online methods, which either lack generalizability or produce unsatisfactory results. However, we have observed that the intrinsic sparse manifold of Multi-plane Images (MPI) enables a significant acceleration of light field generation while maintaining rendering quality. Based on this insight, we introduce EffLiFe, a novel light field optimization method, which leverages the proposed Hierarchical Sparse Gradient Descent (HSGD) to produce high-quality light fields from sparse view images in real time. Technically, the coarse MPI of a scene is first generated using a 3D CNN, and it is further sparsely optimized by focusing only on important MPI gradients in a few iterations. Nevertheless, relying solely on optimization can lead to artifacts at occlusion boundaries. Therefore, we propose an occlusion-aware iterative refinement module that removes visual artifacts in occluded regions by iteratively filtering the input. Extensive experiments demonstrate that our method achieves comparable visual quality while being 100x faster on average than state-of-the-art offline methods and delivering better performance (about 2 dB higher in PSNR) compared to other online approaches.Comment: Submitted to IEEE TPAM

    Regulation of the stability and transcriptional activity of NFATc4 by ubiquitination

    Get PDF
    AbstractNuclear factor of activated T cells (NFATc4) has been implicated as a critical regulator of the cardiac development and hypertrophy. However, the mechanisms for regulating NFATc4 stability and transactivation remain unclear. We showed that NFATc4 protein was predominantly ubiquitinated through the formation of Lysine 48-linked polyubiquitin chains, and this modification decreased NFATc4 protein levels and its transcriptional activity. Furthermore, activation of GSK3β markedly enhanced NFATc4 ubiquitination and decreased its transactivation, whereas inhibition of GSK3β had opposite effects. Importantly, ubiquitination and phosphorylation induced by GSK3β repressed NFATc4-dependent cardiac-specific gene expression. These results demonstrate that the ubiquitin–proteasome system plays an important role in regulating NFATc4 stability and transactivation.Structured summaryMINT-6798349:NFATc4 (uniprotkb:Q14934) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by anti bait coimmunoprecipitation (MI:0006)MINT-6798334:NFATc4 (uniprotkb:Q14934) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-6798321:Ubiquitin (uniprotkb:P62988) physically interacts (MI:0218) with NFATc4 (uniprotkb:Q14934) by pull down (MI:0096

    Boosting Convolutional Neural Networks with Middle Spectrum Grouped Convolution

    Full text link
    This paper proposes a novel module called middle spectrum grouped convolution (MSGC) for efficient deep convolutional neural networks (DCNNs) with the mechanism of grouped convolution. It explores the broad "middle spectrum" area between channel pruning and conventional grouped convolution. Compared with channel pruning, MSGC can retain most of the information from the input feature maps due to the group mechanism; compared with grouped convolution, MSGC benefits from the learnability, the core of channel pruning, for constructing its group topology, leading to better channel division. The middle spectrum area is unfolded along four dimensions: group-wise, layer-wise, sample-wise, and attention-wise, making it possible to reveal more powerful and interpretable structures. As a result, the proposed module acts as a booster that can reduce the computational cost of the host backbones for general image recognition with even improved predictive accuracy. For example, in the experiments on ImageNet dataset for image classification, MSGC can reduce the multiply-accumulates (MACs) of ResNet-18 and ResNet-50 by half but still increase the Top-1 accuracy by more than 1%. With 35% reduction of MACs, MSGC can also increase the Top-1 accuracy of the MobileNetV2 backbone. Results on MS COCO dataset for object detection show similar observations. Our code and trained models are available at https://github.com/hellozhuo/msgc.Comment: 13 pages, 11 figures, submitted to IEEEE Transactions on xx
    corecore