17 research outputs found

    Antipsychotics-induced improvement of cool executive function in individuals living with schizophrenia

    Get PDF
    Cool executive dysfunction is a crucial feature in people living with schizophrenia which is related to cognition impairment and the severity of the clinical symptoms. Based on electroencephalogram (EEG), our current study explored the change of brain network under the cool executive tasks in individuals living with schizophrenia before and after atypical antipsychotic treatment (before_TR vs. after_TR). 21 patients with schizophrenia and 24 healthy controls completed the cool executive tasks, involving the Tower of Hanoi Task (THT) and Trail-Marking Test A-B (TMT A-B). The results of this study uncovered that the reaction time of the after_TR group was much shorter than that of the before_TR group in the TMT-A and TMT-B. And the after_TR group showed fewer error numbers in the TMT-B than those of the before_TR group. Concerning the functional network, stronger DMN-like linkages were found in the before_TR group compared to the control group. Finally, we adopted a multiple linear regression model based on the change network properties to predict the patient’s PANSS change ratio. Together, the findings deepened our understanding of cool executive function in individuals living with schizophrenia and might provide physiological information to reliably predict the clinical efficacy of schizophrenia after atypical antipsychotic treatment

    Thymol-Functionalized Silica Nanomaterials Prepared by Post-Grafting Method: Preparation, Characterization, Bactericidal Activity and Mechanism Research

    No full text
    In this study, thymol was covalently connected to mesoporous silica nanomaterial by a post-grafting method to obtain a stable antibacterial system, thus overcoming the volatilization of thymol, prolonging the effective time of antibacterial action, and enhancing the antibacterial efficiency of thymol. It was proposed for the first time that such a synthetic route be adopted to synthesize silica-based mesoporous/essential oil antibacterial materials. The post-grafting method could be capable of retaining the mesoporous original structure, which could effectively avoid the porosity reduction and disordered products caused by condensation. Among them, the minimum bactericidal concentration (MBC) of functionalized MCM-41 (silica support) for E. coli and S. aureus were 0.3 mg mL−1 and 0.4 mg mL−1, which were equivalent to 3/4 and 4/5 of free thymol (0.4 mg mL−1 and 0.5 mg mL−1), respectively. Meanwhile, the MBC of functionalized SBA-15 (silica support) for E. coli and S. aureus were both 0.2 mg mL−1, which also reduced the MBC of free thymol. These results revealed thymol-functionalized mesoporous silica nanomaterial could efficiently improve the bactericidal activities of the organic component. Finally, the inhibition mechanism of the post-grafting strategy was also discussed, which referred to how the antibacterial material directly acts on the cell membrane, resulting in cell inactivation

    The Synthesis of a Coumarin Carbohydrazide Dinuclear Copper Complex Based Fluorescence Probe and Its Detection of Thiols.

    No full text
    Small-molecule thiols, such as cysteine (CYS) and glutathione (GSH), are essential for maintaining the cellular redox environment and play important roles in regulating various cellular physiological functions. A fluorescence probe (compound 1-Cu2+) for thiols based on coumarin carbohydrazide dinuclear copper complex was developed. Compound 1 was synthesized from the reaction of 7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide with 4-tert-butyl-2,6- diformylphenol. Accordingly, the copper complex (compound 1-Cu2+) was prepared by mixing compound 1 with 2 equivalents copper ions. Compound 1 had strong fluorescence while compound 1-Cu2+ hardly possessed fluorescence owing to the quenching nature of paramagnetism Cu2+ to the fluorescence molecule excited state. However, the fluorescence intensity of compound 1-Cu2+ was increased dramatically after the addition of thiol-containing amino acids, but not the other non-sulfhydryl amino acids. UV-vis absorption and fluorescence spectra indicated that compound 1-Cu2+ had good selectivity and sensitivity for thiols such as glutathione in CH3CN:H2O (3:2, v/v) PBS solution. The fluorescence imaging experiments implied that compound 1-Cu2+ has potential application in thiol-containing amino acids detection in living cells

    Design and Synthesis of a Dinuclear Copper(II) Probe for Selective Fluorescence Sensing of Pyrophosphate

    No full text
    A novel coumarin-based compound DPAC with two dipicolylamine (DPA) arms as the chelator sites was designed and synthesized. The compound DPAC exhibits a highly selective response to Cu2+ ions with a distinctly emission-quenching phenomenon. Moreover, the in situ formed complex DPAC-Cu2+ was used for the detection of pyrophosphate (PPi). The binding manner of probe DPAC-Cu2+ with PPi in 1 : 1 stoichiometry was supported by the Benesi-Hildebrand fitting, ESI-MS and HPLC analysis. The linear range of PPi concentration was 1-4 μM, and the detection limit was 0.53 μM. The competing experiments illustrated that the probe DPAC-Cu2+ had good sensitivity and selectivity for PPi than other anions, including ATP, ADP, AMP, and Pi in CH3CN : HEPES (3 : 2, v/v, pH=7.20) buffer. Further, cell fluorescence imaging experiments indicated that the probe DPAC-Cu2+ had a potential to be used to detect PPi in vivo

    Effect of Precipitation Temperature on the Performance of CuO/ZnO/CeO2/ZrO2 Catalyst for Methanol Steam Reforming

    No full text
    A series of CuO/ZnO/CeO2/ZrO2 catalyst samples for methanol steam reforming were prepared by a co-precipitation procedure, and the effect of precipitation temperature on the catalytic performance was investigated. All the samples were characterized by N-2 adsorption, X-ray diffraction, temperature-programmed reduction, and N2O titration. It is shown that the precipitation temperature remarkably influenced the catalyst structure and property. When the precipitation temperature was 60 degrees C, the catalyst exhibited the best activity with suppressed CO formation. Compared with commercial catalyst (CB-7), the CeZr as support instead of the Al2O3 can dramatically improve the conversion at low temperature, effectively inhibit the CO generation, reduce the subsequent CO removing process, which was helpful for methanol stream reforming technology using in the proton exchange membrane fuel cell applications

    Fluorescence intensity (λ<sub>em</sub> = 483 nm) of compound 1-Cu<sup>2+</sup> to various amino acids: the first bars represent the fluorescence intensity upon addition of 4 equivalents of various amino acids; the second bars represent the fluorescence intensity after subsequent addition of 2 equivalents of GSH to the non-sulfhydryl amino acids solution, respectively.

    No full text
    <p>Fluorescence intensity (λ<sub>em</sub> = 483 nm) of compound 1-Cu<sup>2+</sup> to various amino acids: the first bars represent the fluorescence intensity upon addition of 4 equivalents of various amino acids; the second bars represent the fluorescence intensity after subsequent addition of 2 equivalents of GSH to the non-sulfhydryl amino acids solution, respectively.</p
    corecore