29 research outputs found

    Identification of a cellular senescence-related-lncRNA (SRlncRNA) signature to predict the overall survival of glioma patients and the tumor immune microenvironment

    Get PDF
    Background: Gliomas are brain tumors that arise from glial cells, and they are the most common primary intracranial tumors with a poor prognosis. Cellular senescence plays a critical role in cancer, especially in glioma. In this study, we constructed a senescence-related lncRNA (SRlncRNA) signature to assess the prognosis of glioma.Methods: The Cancer Genome Atlas was used to collect SRlncRNA transcriptome profiles and clinical data about glioma. Patients were randomized to training, testing, and whole cohorts. LASSO and Cox regression analyses were employed to construct the SRlncRNA signature, and Kaplan–Meier (K-M) analysis was performed to determine each cohort’s survival. Receiver operating characteristic (ROC) curves were applied to verify the accuracy of this signature. Gene set enrichment analysis was used to visualize functional enrichment (GSEA). The CIBERSORT algorithm, ESTIMATE and TIMER databases were utilized to evaluate the differences in the infiltration of 22 types of immune cells and their association with the signature. RT–qPCR and IHC were used to identify the consistency of the signature in tumor tissue.Results: An SRlncRNA signature consisting of six long non-coding RNAs (lncRNAs) was constructed, and patients were divided into high-risk and low-risk groups by the median of their riskscore. The KM analysis showed that the high-risk group had worse overall survival, and the ROC curve confirmed that the riskscore had more accurate predictive power. A multivariate Cox analysis and its scatter plot with clinical characteristics confirmed the riskscore as an independent risk factor for overall survival. GSEA showed that the GO and KEGG pathways were mainly enriched in the immune response to tumor cells, p53 signaling pathway, mTOR signaling pathway, and Wnt signaling pathway. Further validation also yielded significant differences in the risk signature in terms of immune cell infiltration, which may be closely related to prognostic differences, and qRT–PCR and IHC confirmed the consistency of the expression differences in the major lncRNAs with those in the prediction model.Conclusion Our findings indicated that the SRlncRNA signature might be used as a predictive biomarker and that there is a link between it and immune infiltration. This discovery is consistent with the present categorization system and may open new avenues for research and personalized therapy

    SoccerNet 2023 Challenges Results

    Full text link
    peer reviewedThe SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet

    A Novel Method of Aircraft Detection Based on High-Resolution Panchromatic Optical Remote Sensing Images

    No full text
    In target detection of optical remote sensing images, two main obstacles for aircraft target detection are how to extract the candidates in complex gray-scale-multi background and how to confirm the targets in case the target shapes are deformed, irregular or asymmetric, such as that caused by natural conditions (low signal-to-noise ratio, illumination condition or swaying photographing) and occlusion by surrounding objects (boarding bridge, equipment). To solve these issues, an improved active contours algorithm, namely region-scalable fitting energy based threshold (TRSF), and a corner-convex hull based segmentation algorithm (CCHS) are proposed in this paper. Firstly, the maximal variance between-cluster algorithm (Otsu’s algorithm) and region-scalable fitting energy (RSF) algorithm are combined to solve the difficulty of targets extraction in complex and gray-scale-multi backgrounds. Secondly, based on inherent shapes and prominent corners, aircrafts are divided into five fragments by utilizing convex hulls and Harris corner points. Furthermore, a series of new structure features, which describe the proportion of targets part in the fragment to the whole fragment and the proportion of fragment to the whole hull, are identified to judge whether the targets are true or not. Experimental results show that TRSF algorithm could improve extraction accuracy in complex background, and that it is faster than some traditional active contours algorithms. The CCHS is effective to suppress the detection difficulties caused by the irregular shape

    Single-Shot Colored Speckle Pattern for High Accuracy Depth Sensing

    No full text

    Fabrication of Co3O4/NiCo2O4 Nanocomposite for Detection of H2O2 and Dopamine

    No full text
    Herein, the Co3O4/NiCo2O4 nanocomposite has been prepared as a novel electrochemical sensor to accurately detect hydrogen peroxide (H2O2) and glucose. ZIF-67 is a metal-organic framework (MOF) with Co as the center metal ion. Co3O4 can be obtained by calcination of ZIF-67 at 700 °C, which can retain the structure of ZIF-67. The hollow Co3O4 nanocrystal was synthesized based on a calcination process of ZIF-67. This open structure can promote the whole Co3O4/NiCo2O4 nanocomposite larger accessible surface area and reactive sites. Co3O4 has good electrocatalytic performance, which has been applied in many fields. Moreover, H2O2 and dopamine sensing tests indicate that the as-prepared non-enzymatic electrochemical biosensor has good detection properties. The testing results indicate the as-prepared biosensor has a wide detection range, low detection limit, high selectivity, and long-term stability. These testing results suggest the potential application in food security, biomedicine, environmental detection, and pharmaceutical analysis

    Partitionable High-Efficiency Multilayer Diffractive Optical Neural Network

    No full text
    A partitionable adaptive multilayer diffractive optical neural network is constructed to address setup issues in multilayer diffractive optical neural network systems and the difficulty of flexibly changing the number of layers and input data size. When the diffractive devices are partitioned properly, a multilayer diffractive optical neural network can be constructed quickly and flexibly without readjusting the optical path, and the number of optical devices, which increases linearly with the number of network layers, can be avoided while preventing the energy loss during propagation where the beam energy decays exponentially with the number of layers. This architecture can be extended to construct distinct optical neural networks for different diffraction devices in various spectral bands. The accuracy values of 89.1% and 81.0% are experimentally evaluated for MNIST database and MNIST fashion database and show that the classification performance of the proposed optical neural network reaches state-of-the-art levels

    Cloning of Two <i>HSP</i> Genes of <i>Eriocheir hepuensis</i> and Their Expression under <i>Vibrio parahaemolyticus</i> Stress

    No full text
    Heat shock proteins (HSPs) are molecular chaperone proteins that can help maintain cellular protein homeostasis, assist in correcting the folding of cellular proteins, and protect organisms from stress when the body is under stress conditions such as temperature changes or bacterial infections. In this study, the HSP10 and HSP40 genes of Eriocheir hepuensis were cloned and named Eh-HSP10 and Eh-HSP40. The results show that the coding sequence length of the HSP10 and HSP40 genes of E. hepuensis was 309 bp and 1191 bp, encoding 102 and 396 amino acids, respectively. The results of protein domain prediction show that Eh-HSP10 has a Cpn10 domain. The Eh-HSP40 protein contains a DnaJ domain, which is characteristic of the HSP40 gene family. The results of qRT-PCR show that the Eh-HSP10 and Eh-HSP40 genes were expressed in different normal tissues, with the highest expression in the heart. Under Vibrio parahaemolyticus stress, the Eh-HSP10 genes peaked at 6 h, and the Eh-HSP40 peaked at 9 h in the hepatopancreas. In the gill, Eh-HSP10 showed a double peak at 24 and 48 h, and the expression of Eh-HSP40 was time-dependent. In the heart, the expression of Eh-HSP10 increased first and then decreased, whereas Eh-HSP40 peaked at 48 h. The results indicate that the Eh-HSP10 and Eh-HSP40 proteins may play a role in protecting E. hepuensis under V. parahaemolyticus infection and that they may be involved in the innate immune response of E. hepuensis against bacteria

    Cloning of Two HSP Genes of Eriocheir hepuensis and Their Expression under Vibrio parahaemolyticus Stress

    No full text
    Heat shock proteins (HSPs) are molecular chaperone proteins that can help maintain cellular protein homeostasis, assist in correcting the folding of cellular proteins, and protect organisms from stress when the body is under stress conditions such as temperature changes or bacterial infections. In this study, the HSP10 and HSP40 genes of Eriocheir hepuensis were cloned and named Eh-HSP10 and Eh-HSP40. The results show that the coding sequence length of the HSP10 and HSP40 genes of E. hepuensis was 309 bp and 1191 bp, encoding 102 and 396 amino acids, respectively. The results of protein domain prediction show that Eh-HSP10 has a Cpn10 domain. The Eh-HSP40 protein contains a DnaJ domain, which is characteristic of the HSP40 gene family. The results of qRT-PCR show that the Eh-HSP10 and Eh-HSP40 genes were expressed in different normal tissues, with the highest expression in the heart. Under Vibrio parahaemolyticus stress, the Eh-HSP10 genes peaked at 6 h, and the Eh-HSP40 peaked at 9 h in the hepatopancreas. In the gill, Eh-HSP10 showed a double peak at 24 and 48 h, and the expression of Eh-HSP40 was time-dependent. In the heart, the expression of Eh-HSP10 increased first and then decreased, whereas Eh-HSP40 peaked at 48 h. The results indicate that the Eh-HSP10 and Eh-HSP40 proteins may play a role in protecting E. hepuensis under V. parahaemolyticus infection and that they may be involved in the innate immune response of E. hepuensis against bacteria

    Pyrotinib Targeted EGFR-STAT3/CD24 Loop-Mediated Cell Viability in TSC

    No full text
    Pyrotinib is an irreversible pan-ErbB receptor tyrosine kinase inhibitor, designed for the therapy of HER2-positive breast cancers. Inhibition of the epidermal growth factor receptor (EGFR, HER family) efficiently and selectively suppresses the proliferation of human TSC2-deficient smooth muscle cells and reverses lung changes in LAM/TSC. Our pilot study indicated that pyrotinib dramatically restrained the vitality of TSC2-deficient cells compared to its limited impact on TSC2-expression cells. Pyrotinib induced G1-phase arrest and triggered apoptosis by blocking abnormally activated CD24 in TSC2-deficient cells. CD24 is not only an important immune checkpoint, but is also involved in the regulation of signaling pathways. Pyrotinib inhibited the nuclear import of pEGFR and restrained the pEGFR/pSTAT3 signals, which directly boosted the transcriptional expression of CD24 by binding to its promoter region. In reverse, CD24 enhanced pEGFR function by directly binding. Pyrotinib specifically targeted TSC2-deficient cells, inhibited tumor cell viability and induced apoptosis through EGFR-STAT3/CD24 Loop in vivo and in vitro. Thus, pyrotinib may be a promising new therapeutic drug for TSC treatment
    corecore