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Background: Gliomas are brain tumors that arise from glial cells, and they are the
most common primary intracranial tumors with a poor prognosis. Cellular
senescence plays a critical role in cancer, especially in glioma. In this study, we
constructed a senescence-related lncRNA (SRlncRNA) signature to assess the
prognosis of glioma.

Methods: The Cancer Genome Atlas was used to collect SRlncRNA transcriptome
profiles and clinical data about glioma. Patients were randomized to training,
testing, and whole cohorts. LASSO and Cox regression analyses were employed to
construct the SRlncRNA signature, and Kaplan–Meier (K-M) analysis was
performed to determine each cohort’s survival. Receiver operating
characteristic (ROC) curves were applied to verify the accuracy of this
signature. Gene set enrichment analysis was used to visualize functional
enrichment (GSEA). The CIBERSORT algorithm, ESTIMATE and TIMER
databases were utilized to evaluate the differences in the infiltration of
22 types of immune cells and their association with the signature. RT–qPCR
and IHC were used to identify the consistency of the signature in tumor tissue.

Results: An SRlncRNA signature consisting of six long non-coding RNAs (lncRNAs)
was constructed, and patients were divided into high-risk and low-risk groups by
themedian of their riskscore. The KM analysis showed that the high-risk group had
worse overall survival, and the ROC curve confirmed that the riskscore had more
accurate predictive power. A multivariate Cox analysis and its scatter plot with
clinical characteristics confirmed the riskscore as an independent risk factor for
overall survival. GSEA showed that the GO and KEGG pathways were mainly
enriched in the immune response to tumor cells, p53 signaling pathway, mTOR
signaling pathway, and Wnt signaling pathway. Further validation also yielded
significant differences in the risk signature in terms of immune cell infiltration,
which may be closely related to prognostic differences, and qRT–PCR and IHC
confirmed the consistency of the expression differences in the major lncRNAs
with those in the prediction model.
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ConclusionOur findings indicated that the SRlncRNA signature might be used as a
predictive biomarker and that there is a link between it and immune infiltration. This
discovery is consistent with the present categorization system and may open new
avenues for research and personalized therapy.
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1 Introduction

Glioma, the most common malignant tumor of the central
nervous system (CNS), accounts for approximately 75% of all
malignancies and 30%–40% of all CNS primary tumors, with a
median overall survival of 9–12 months (Lapointe et al., 2018;
Chen et al., 2020). According to WHO CNS5 in 2021, the
importance of grading within tumor type was proclaimed (Louis
et al., 2021). Four different families are divided: 1) Adult-type
diffuse gliomas; 2) Pediatric-type diffuse low-grade gliomas; 3)
Pediatric-type diffuse high-grade gliomas; and 4) Circumscribed
astrocytic gliomas. On the other hand, adult-type diffuse gliomas
include only three types: Astrocytoma, IDH-mutant;
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and
Glioblastoma, IDH-wildtype; The latest edition of WHO
Classification of Central Nervous System Neoplasm will be the
first of its kind Genotypes were included in the diagnosis of glioma,
in which isocitrate dehydrogenase was included Genes (isocitrate
dehydrogenase, IDH) and chromosomes 1p/19q is the core basis of
glioma molecular typing, according to IDH mutation
Histologically similar diffuse gliomas are divided into different
subgroups Type I, while the 1p/19q joint deletion in IDH mutant
oligodendrocyte fine The significance of neoplasms is gaining
recognition, and this new typing method can Better judgment of
prognosis, accurate guidance of treatment (Brandner et al., 2022;
Xu et al., 2022). Despite advances in different therapies, such as
surgery, radiation, and chemotherapy, in many instances, these
glioma patients’ overall survival rates have declined. Glioblastoma
patients, in particular, have a 14-month average survival (Delgado-
Lopez and Corrales-Garcia, 2016). The extensive infiltration of
cancer cells into the brain tissue complicates full surgical resection
of glioma and is a fundamental factor in glioma’s poor prognosis
(Verburg et al., 2016). Glioma cells, in contrast to normal tissue,
exhibit an uninhibited pattern of tumor growth, including the
maintenance of proliferative activity, resistance to growth
inhibitory factors and cell death stimuli, stimulation of
angiogenesis, promotion of invasion and metastasis,
reprogramming of energy metabolism, and immune escape
(Hainaut and Plymoth, 2013). Glioma displays not only these
properties but also a dramatically heterogeneous tumorigenic
“tumor microenvironment” by attracting undifferentiated and
differentiated cells to generate glioma cell heterogeneity,
boosting their resistance to chemotherapy and radiation
(Saadatpour et al., 2016; Quezada et al., 2018). Therefore, there
is an urgent need to better understand the mechanisms and
development of glioma at the genetic and molecular levels,
which in turn will provide a new theoretical basis for the
diagnosis and treatment of gliomas.

Cellular senescence was first discovered in 1961 by
microbiologists Leonard Hayflick and Paul Moorhead during
in vitro passaging of adult cells. Cellular senescence is a self-
protective mechanism that occurs in response to DNA damage,
telomere shortening, oncogene activation, epigenetic changes, and
oxidative stress, manifesting itself as permanent growth arrest and
cell division cycle arrest in G1 or S phase to prevent the transmission
of abnormal genes to the next-generation of cells, thereby
maintaining homeostasis (Munoz-Espin and Serrano, 2014;
Hernandez-Segura et al., 2018; Calcinotto et al., 2019;
Mehdizadeh et al., 2022). Depending on the cause of senescence,
cell senescence can be categorized into replicative senescence and
stress-induced premature senescence, the latter of which can be
subdivided into DNA-damaged senescence, oxidative stress
senescence, epigenetic senescence, and inflammatory senescence
(Hernandez-Segura et al., 2018; Mehdizadeh et al., 2022). Cell
senescence is closely associated with tumorigenesis, progression,
and resistance to therapy. Oncogene-induced senescence (OIS) is a
term for senescence induced by oncogene activation. Endothelial
cellular senescence leading to the secretion of CXCL11 increases the
aggressiveness of breast cancer cells (Hwang et al., 2020). Cellular
senescence promotes skin carcinogenesis through p38MAPK and
p44/42 MAPK signaling (Alimirah et al., 2020). Reversible cellular
senescence is involved in the response of colon cancer to
methotrexate (Dabrowska et al., 2021). Thus, senescence is one of
the physiological inhibitory pathways that suppresses tumor lesions.
On the other hand, inactivation of oncogenes can induce senescence.
Inactivation of MYC leads to cell senescence and degeneration in a
variety of tumor types, including lymphoma, osteosarcoma, and
hepatocellular carcinoma. These effects are mediated by multiple
mechanisms, reflecting the complexity of oncogene-induced
tumorigenesis and cell senescence (Bellovin et al., 2013).

Non-coding RNAs include microRNAs (miRNAs, 18–22 nt)
and long non-coding RNAs (longer than 200 nt) (Peng et al.,
2018; Cheng et al., 2020; Gao et al., 2020; Garbo et al., 2022).
LncRNAs were originally identified by large-scale sequencing of a
full-lengthmouse cDNA library (Okazaki et al., 2002). LncRNAs can
be found in the nucleus or cytoplasm and play a variety of roles
depending on their subcellular location. In the nucleus, lncRNAs
might have a role in gene expression regulation, transcriptional
control, and mRNA splicing. They can alter mRNA stability and
protein function in the cytoplasm (Quinn and Chang, 2016).
Furthermore, lncRNAs perform their roles through a variety of
molecular processes, including DNA binding to regulate gene
transcription, binding to proteins, producing short functional
peptides, and regulating the posttranscriptional stages by acting
as competitive endogenous RNAs (ceRNAs) or miRNA sponges
(Kopp and Mendell, 2018; Chen et al., 2021; Mao et al., 2022).
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Although lncRNAs are known to play roles in a variety of human
diseases, the mechanism by which lncRNAs drive glioma cell
senescence is unexplored; hence, we screened the TCGA database
for cell senescence-associated lncRNAs to develop a novel algorithm
to predict the outcome of glioma.

2 Methods

2.1 Data source

The clinical and gene expression data of patients with LGGGBM
were obtained from the TCGA database (https://cancergenome.nih.
gov/) and the CGGA database (http://www.cgga.org.cn/). Normal
brain RNA sequencing data were obtained from GTEx and utilized
as normal control data. In this research, data from 609 glioma
samples and 1152 normal brain samples were analyzed. Among
them, the data used in the gene expression data were normalized.
Next, DEGs were chosen using the R software’s “limma” package
with the absolute value of the log2-transformed fold change (FC) >
1 and the adjusted p-value (adj. P) < 0.05 as the cutoff. In addition,
the ComBat method was used to reduce batch effects with the R
package “sva”.

2.2 Screening of lncRNAs and cellular
senescence-related genes

The profiles of lncRNAs were acquired from the RNAseq
dataset. The log2 transformation was used to normalize the total
RNA expression data. The list of cellular senescence-related genes
was obtained from the Human Aging Genomic Resources (HAGR)
(https://genomics.senescence.info). The Pearson correlation was

used to calculate the relationship between lncRNAs and cellular
senescence-related genes. Cellular senescence-related lncRNAs
(SRlncRNAs) were screened by a correlation coefficient R2 > 0.
4 and a p < 0.001. Finally, coexpression networks were visualized
using Cytoscape software 3.8.0.

2.3 Identification of prognostic cellular
senescence-related lncRNAs

To construct a validated prognostic model, 609 glioma patients
were randomly divided into training and testing cohorts. Ultimately,
306 patients were enrolled in the training cohort, and 303 patients
were enrolled in the testing cohort. The key characteristics of each
cohort are shown in Table 1. The SRlncRNA signature was derived
based on the training cohort, and its potential to predict patient
survival was validated utilizing the testing cohort and the whole
cohort. We also confirmed the prognostic signature in the TCGA-
LGG cohort, the TCGA-GBM cohort and the CGGA cohort
(Supplementary Tables S1, S2).

The prognostic significance of cellular senescence-related
lncRNAs was initially determined using univariate Cox
regression. Least absolute shrinkage and selection operator
(LASSO) regression was used to integrate the cellular senescence-
related lncRNAs with p < 0.05 in univariate analysis. The LASSO
results were then included in a multivariate Cox model to generate a
risk score. A risk score was calculated using a linear combination of
cellular senescence-related lncRNA expression levels multiplied by a
regression coefficient (β): risk score = ∑n

i�1βi × (expression of
lncRNAi). Based on the median risk score, the patients were
categorized into high-risk and low-risk groups. The log-rank test
was used to compare the survival differences between the two
groups.

TABLE 1 The characteristics of glioma patients from TCGA in this study.

Variable Group Overall cohort (n = 609) Training cohort (n = 306) Testing cohort (n = 303)

Age ≤65 528 (87.0%) 268 (87.6%) 260 (85.8%)

>65 81 (13.0%) 38 (12.4%) 43 (14.2%)

Gender Female 262 (43.0%) 132 (43.1%) 130 (42.9%)

Male 347 (57.0%) 174 (56.9%) 173 (57.1%)

Tumor grade G2 229 (37.6%) 116 (37.9%) 113 (37.3%)

G3 244 (40.0%) 130 (42.5%) 114 (37.6%)

G4 136 (22.4%) 60 (19.6%) 76 (25.1%)

IDH mutant status Mutant 397 (65.2%) 202 (66.0%) 195 (64.4%)

Wildtype 212 (34.8%) 104 (34.0%) 108 (35.6%)

1p19q codeletion status Non-codel 453 (74.4%) 227 (74.2%) 226 (74.6%)

Codel 156 (25.6%) 79 (25.8%) 77 (25.4%)

Survival status Alive 414 (68.0%) 212 (69.3%) 202 (66.7%)

Dead 195 (32.0%) 94 (30.7%) 101 (33.3%)

Survivaltime (years) (Mean ± SD) 2.16 ± 2.35 2.17 ± 2.33 2.15 ± 2.36

Frontiers in Genetics frontiersin.org03

Liu et al. 10.3389/fgene.2023.1096792

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.cgga.org.cn/
https://genomics.senescence.info
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1096792


FIGURE 1
Cellular senescence-related lncRNA selection utilizing the LASSOmodel and the coexpression network and Sankey diagram. (A). LASSO coefficient
values and vertical dashed lines generated at the best log (lambda) values, (B). LASSO coefficient curves for SRlncRNAs. (C). The coexpression network
between SRlncRNAs and mRNAs in glioma. The red nodes represent prognostic lncRNAs, and the sky-blue nodes represent mRNAs. (D) Sankey diagram
showing the association between prognostic cell senescence-related lncRNAs, mRNAs, and risk types.
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2.4 Prognostic model construction and
validation

To construct an independent prognostic model, Cox regression
was used. Patient survival was predicted utilizing a nomogram. The
correctness of the model was assessed by utilizing the concordance
index (C-index), calibration curves, and receiver operating
characteristic (ROC) curves. We used multivariate Cox regression
with demographic data to determine whether the risk score was an
independent predictor of patient outcomes.

2.5 Functional analysis

The functional enrichment of the gene expression data was
interpreted by employing Gene Set Enrichment Analysis (GSEA,
http://www.broadinstitute.org/gsea/index.jsp). The Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways associated with cellular senescence are displayed, as well as
the functional enrichment of cell senescence-related lncRNAs with
predictive significance.

2.6 Correlation analysis of immune cell
infiltration

To assess the riskscore and the level of correlation of the immune
Microenvironment, immune-infiltrating scores of 16 immune cells,
13 immune function and immune checkpoint were calculated by
singlesample gene set enrichment analysis (ssGSEA) using the “gsva”
and “GSEABase” packages in R software. Additionally examined was
the relationship between riskscore and immunological subtypes
(C1–C6). At the same time, we calculated the immune infiltration
between the high- and low-risk groups using the CIBERSORT, TIMER
and ESTIMATE databases. Pearson correlation was used to determine
the relationship between risk scores and immune infiltration.

2.7 Clinical samples and cell culture

All procedures for this research were approved by the Ethics
Committee of Harbin Medical University (Harbin, China). Glioma

samples and adjacent normal brain tissue were collected from
24 patients who were resected at Harbin Medical University
Cancer Hospital. Patients had not been treated with radiotherapy
or chemotherapy before surgery. All tissue samples were
pathologically confirmed and immediately frozen in liquid
nitrogen for storage until the RNA was extracted. Each patient
signed a written informed consent form before the tissue samples
were used for research purposes. The clinical characteristics of the
24 glioma patients are shown in Supplementary Table S4.

The human GBM cell lines (T98G and U251) and the normal
human astrocyte cell line (NHA) were obtained from our laboratory
(Li et al., 2019a). All cell lines were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; SIGMA) supplemented with 10% fetal
bovine serum (FBS; PAN SERATECH) at 37°C in a humidified
chamber containing 5% CO2. All glioma patients from our hospital
were informed and ethical approval for the current research was
obtained through the Ethics Committee of Harbin Medical
University (KY2021-42).

2.8 qRT–PCR analysis

The RNAsimple Total RNA Kit (DP419, Tiangen Biotech Co.,
Ltd. Beijing, China) was used to extract total RNA from tissue and
cells. The lnRcute lncRNA First-Strand cDNA Kit (KR202, Tiangen
Biotech Co., Ltd.) was used to construct complementary DNA. The
lnRcute lncRNA qPCR Kit (FP402, Tiangen Biotech Co., Ltd.) was
used to perform RT-qPCRs according to the manufacturer’s
instructions. To evaluate relative gene expression, the 2−ΔΔCt

method was utilized. GAPDH was used as an endogenous
control. The primer sequences were as follows: SNAI3-AS1, 5-
TGAGGTGCTCCTCCGAGAAT-3 (Forward) and 5-GTATAG
CTCCCTGGCAGAGTTCA-3 (Reverse); GAPDH, 5-CAGGAG
GCATTGCTGATGAT-3 (Forward) and 5GAAGGCTGGGGC
TCATTT-3 (Reverse).

2.9 Immunohistochemistry

All tissues were fixed overnight in formalin solution, dehydrated
in ethanol, embedded in paraffin and sectioned at 5 mm. To remove
the paraffin, specimens were treated with xylene and ethanol. Slides
were blocked with 5% normal goat serum and incubated overnight at
4°C with anti-YPEL3 (Proteintech). After washing with PBS, slides
were incubated with goat anti-rabbit horseradish peroxidase for
30 min at room temperature. Immunohistochemical (IHC)
reactions were detected using the DAB kit. Slides were examined
under a phase-contrast light microscope (Nikon).

2.10 Statistical analysis

The survival curves were constructed using the Kaplan-Meier
method and evaluated using the log-rank test. The predictive impact
of the cellular SRlncRNAS signature and clinicopathological data
was estimated by combining Cox regression and LASSO regression.
The statistical analyses were carried out using the R programming
language (version 4.1.3). The differences between groups were

TABLE 2 The 6 senescence-related prognostic lncRNA multivariate Cox
regression analyses of OS in glioma patients.

LncRNA Coefficient HR HR.95 L HR.95 H p-Value

SNAI3-AS1 −1.23692 0.29028 0.11743 0.71753 0.00739

CRNDE 0.54993 1.73312 1.26485 2.37476 0.00062

AGAP2-
AS1

0.11751 1.12469 0.96507 1.31070 0.13239

HOXD-AS2 0.28073 1.32409 0.90819 1.93046 0.14447

PAXIP1-
AS2

0.46398 1.59040 1.08875 2.32318 0.01641

WAC-AS1 −0.45368 0.63529 0.39669 1.01740 0.05900
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FIGURE 2
Construction and evaluation of the SRlncRNA signature in the training cohort. (A) K-M curves indicated that the high-risk group had a lower survival
rate. (B) ROC curves and AUC values for each feature. (C) ROC curves and AUC values predict survival probabilities at 1, 3, and 5 years. (D). Heatmap of
6 SRlncRNA expression profiles. (E) Scatter plot displaying the correlation between glioma patient survival status and risk score. (F) A risk score distribution
plot depicting the distribution of glioma patients with high and low risk.
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calculated utilizing a two-tailed Student’s t-test. The statistical tests
were conducted bilaterally, with a significance level of p < 0.05.

3 Results

3.1 Cellular senescence-related lncRNAs
with significant prognostic value in glioma

The flowchart of this study is shown in Supplementary Figure
S1. A total of 279 cellular senescence-related genes were obtained
from HAGR, among which 273 genes were expressed in glioma, and
a total of 483 cellular SRlncRNAs were obtained by constructing a
cellular senescence-related mRNA and lncRNA coexpression
network. Applying LASSO regression, 31 lncRNAs associated
with cell senescence were identified (Figures 1A, B;
Supplementary Table S3). In total, 13 lncRNAs with a low risk
(hazard ratio (HR) < 1) and 18 lncRNAs with a high risk (hazard
ratio (HR) > 1) were found. Furthermore, multivariate Cox analysis
revealed 6 lncRNAs with prognostic significance and their
coefficients among the aforementioned 31 cellular SRlncRNAs
(Table 2). The names of the 6 lncRNAs were SNAI3-AS1,
CRNDE, AGAP2-AS1, HOXD-AS2, PAXIP1-AS2, WAC-AS1.
These 6 lncRNAs were exploited to construct an SRlncRNA
signature. The risk score was calculated using the following
formula: (0.54993 × CRNDE) + (0.11751 × AGAP2-AS1) +

(0.28073 × HOXD-AS2) + (0.46398 × PAXIP1-AS2)—(0.45368 ×
WAC-AS1)- (1.23692 × SNAI3-AS1). According to the hazard ratio
(HR) score obtained by the multivariate Cox regression analysis,
CRNDE, AGAP2-AS1, HOXD-AS2, and PAXIP1-AS2 were risk
factors, whereas SNAI3-AS1 andWAC-AS1 were protective factors.
These six lncRNAs were used to construct an optimal prognostic
risk model and a prognostic visual coexpression network of cellular
SRlncRNAs-mRNAs (Figures 1C, D).

To assess the sensitivity and specificity of the riskscore in
predicting the survival of glioma patients, the training cohort was
categorized into low-risk group and high-risk group. The K-M curve
results indicated that patients in the high-risk group had a
significantly lower survival rate than those in the low-risk group
(p < 0.001) (Figure 2A). The area under the ROC curve of the risk
score (AUC) was 0.946, which was higher than the AUC values of
other clinical parameters (Figure 2B). The ROC curves also gave
AUC values of 0.904, 0.947, and 0.897 for overall survival (OS) at 1,
3, and 5 years, respectively (Figure 2C).

According to the heatmap, the expression of the 6 SRlncRNAs
differed significantly between the high-risk group and the low-risk
group (Figure 2D). Patients with glioma who had high risk scores
had significantly worse survival rates than those who had low risk
scores, as shown in a scatter plot (Figure 2E). Furthermore, the
distribution plot of the riskscore corresponded to the patient
population categorization (Figure 2F). Further prognostic results
of the 6 SRlncRNAs examined by K-M curves revealed that greater

FIGURE 3
The prognostic signature of SRlncRNA K-M curves in the training cohort. (A–F) K-M survival curves for CRNDE, AGAP2-AS1, HOXD-AS2, and
PAXIP1-AS2 showed that the high expression group hadworseOS, whereas the K-M curves for SNAI3-AS1 andWAC-AS1 showed that the high expression
group had better OS.
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expression of CRNDE, AGAP2-AS1, HOXD-AS2, and PAXIP1-AS2
and lower expression of SNAI3-AS1 and WAC-AS1 were
substantially linked with shorter OS survival (p < 0.0001)
(Figures 3A–F). Overall, the results confirmed that the
6 SRlncRNAs formed a highly accurate glioma prognostic risk
model.

3.2 Validation of the SRlncRNA prognostic
signature

To validate the predictive power of the SRlncRNA prognostic
signature, the risk scores were calculated for patients in both the
testing cohort and the whole cohort, and patients were categorized
into the low-risk group and high-risk group based on the median
risk score. Analysis of OS by K-M curves for the testing cohort (p <
0.001) (Figure 4A) and the whole cohort (p < 0.001) (Figure 4C)
demonstrated that these results were consistent with the training
cohort. The ROC curves for the testing cohort (AUC = 0.917)
(Figure 4B) and whole cohort (AUC = 0.914) (Figure 4D)
demonstrated the accuracy of the predictions of the SRlncRNA
signature for OS in glioma patients, which was verified further by the
ROC survival curves and AUC values (Figures 4F, I). The heatmap
illustrated the consistent expression profile of the training cohort

(Figures 4E, G). Scatter plots indicated worse survival in the high-
risk group than in the low-risk group in both the testing cohort and
whole cohort, and risk score distribution plots verified a higher risk
score in the high-risk group (Figures 4H, K, J, L). Furthermore, the
constructed signature was evaluated using the TCGA-LGG, TCGA-
GBM cohorts and the CGGA cohorts, the results indicated that the
signature was an excellent predictor of survival of glioma patients
(Supplementary Figures S1, S2). In conclusion, the SRlncRNA
prognostic signature we constructed exhibited good predictive value.

3.3 Examine the link between SRlncRNAs
and clinicopathological factors

To further assess the role of SRlncRNAs in glioma prognosis, we
analyzed the correlation between SRlncRNAs and
clinicopathological factors. As shown in Figure 5, the heatmap
suggested that IDH mutation status, 1p19q codeletion status,
grade, age, and survival status were significantly different in
different groups (Figure 5A). The survival status was negatively
correlated with a higher risk score (Figure 5B), followed by a positive
correlation between glioma grade and a higher risk score
(Figure 5C), and there was a lower risk and a better prognosis
when an IDH mutation occurred (Figure 5D), as well as a lower risk

FIGURE 4
Validation of the SRlncRNA prognostic signature in the testing cohort and the whole cohort. K-M curves show that the higher risk group had worse
OS in the testing cohort (A) and whole cohort (C). The ROC curves for the prognostic features in the testing cohort (B) and whole cohort (D) suggest the
highest AUC values for the risk score. Heatmap of 9 SRlncRNAs expression profiles show SRlncRNA expression in the high-risk group and the low-risk
group in the testing cohort (E) and the whole cohort (G). ROC curves at 1, 3 and 5 years in both the testing cohort (F) and the whole cohort (I) show
significant sensitivity. Scatter plots show the correlation between the survival status and risk scores of high- and low-risk glioma patients in the testing
cohort (H) and the whole cohort (J). Risk distribution plots show the distribution of high-risk and low-risk glioma patients in the testing cohort (K) and the
whole cohort (L).
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with 1p19q codeletion (Figure 5E). In conclusion, there is a
significant correlation between our constructed glioma risk score
and the clinical factors of glioma.

3.4 Evaluation of the SRlncRNA prognostic
signature for glioma patients

Univariate and multivariate Cox regression analyses were used to
explore whether the aforementioned 6 SRlncRNA prognostic signature
was an independent prognostic signature for glioma. In univariate Cox
regression analysis (Figure 6A), the risk score hazard ratio (HR) was
1.147 (95% CI 1.126–1.169) (p < 0.001), and in multivariate Cox
regression analysis (Figure 6B), it was 1.064 (95% CI 1.034–1.096)
(p < 0.001). Using age, sex, stage, 1p19q codeletion status, and the risk

score, a nomogram plot was constructed to predict 1-year, 3-year, and
5-year survival in glioma patients (Figure 6C). Before the construction
of nomogram, Schoenfeld test was performed to examine the quality of
factors (Supplementary Figure S4). The nomogram’s prediction
capacity was demonstrated by the calibration curve, and the C-index
was 0.8547 (Figures 6D–F).

3.5 GSEA enrichment

In the GSEA-GO analysis (Figure 7A), the highly expressed
SRlncRNAs were mainly concentrated in the Immune response to
tumor cell, immunoglobulin production, synaptic transmission, NF-kB
signaling pathway, whereas the SRlncRNAs with low expression were
mainly concentrated in ligand gated ion channel signaling pathway,

FIGURE 5
Examination of the link between SRlncRNAs and clinicopathological factors. (A) The heatmap suggests that IDH mutation status, 1p19q codeletion
status, grade, age, and survival status are significantly different in different groups. (B,C) The scatter diagrams indicate that survival status and grade are
positive with a higher-risk score. (D,E), The scatter diagrams indicate that IDHmutation status and 1p19q codeletion status are positively correlated with a
significantly lower riskscore. *p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant.
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regulation of trans-synaptic signaling. Furthermore, in the GSEA-
KEGG analysis (Figure 7B), mismatch repair, immunodeficiency,
p53 signaling pathway, autoimmune thyroid disease was enriched in
the high expression group, whereas mTOR signaling pathway, WNT
signaling pathway, ERBB signaling pathway, phosphatidylinositol
signaling system were enriched in the low expression group.

3.6 Correlation of SRlncRNAswith the tumor
immune microenvironment in glioma

To further explore the correlation between riskscore and
immune cells, functions and checkpoint, we quantified the
enrichment scores of ssGSEA. We found that all items except

FIGURE 6
Assessment of the prognostic signature of the SRlncRNAs in glioma. (A) The results of univariate Cox regression analysis of the riskscore and clinical
factors. (B) The results of multivariate Cox regression analysis of the riskscore and clinical factors. (C) The nomogram of the risk score and clinical factors.
(D–F) the calibration curves of the nomogram displaying the concordance between predicted and observed 1-, 3-, and 5-year OS.
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three immune cells (DCs, NK_cells, Th1_cells) were significantly
different (p < 0.01, Figure 8A), indicating a significant change in the
immunophenotype in the high-risk and low-risk groups. We further
explored the expression of immune function and checkpoint-related
markers in two groups and found all markers were also significantly
different (Figures 8B, C). By assessing the immune subtypes, we
discovered that the high-risk group was mostly concentrated in the
C4 subtype (Lymphocyte-depleted), was statistically significant, and
that the low-risk group was primarily concentrated in the
C5 subtype (immunologically quiet) (Figure 8D).

The CIBERSORT algorithm was utilized to further evaluate the
differences in infiltration of 22 subtypes of immune cells. The
relative information proportion of the 22 immune subtypes in
the whole cohort and the correlation between the 22 immune
subtypes are shown (Figure 9A). Consequently, we investigated
the relationship between tumor-infiltrating immune cells and
SRlncRNAs. Out of our results, we found that CD8_Tcells, CD4_
Tcell memory activated, T-cell follicular helper, T-cell gamma delta,
MacrophagesM0-M1-M2 and neutrophils were more abundant in
the high-risk group (p < 0.05). In contrast, the levels of NK cells
activated, Monocytes, and mast cells activated were lower in the
high-risk group (p < 0.05) (Figure 9B). We also explored the
correlation between the SRlncRNA riskscore and tumor-
infiltrating immune cells using the ESTIMATE Databases. From
the results of ESTIMATE, all items were significant between high-
risk and low-risk groups (Figures 9C–F). Based on the
aforementioned analysis, we discovered that two groups had a
significant and varied immune infiltration pattern, which may
have different survival benefits.

3.7 Validation of the expression level of
SRlncRNAs

To further identify the expression levels of SRlncRNAs, we
selected SNAI3-AS1 and its target gene for the follow-up
analysis. We found that SNAI3-AS1 was significantly under
expressed in LGG and GBM by using the Gene Expression

Profiling Interactive Analysis (GEPIA) database (Figure 10A).
The expression levels of SNAI3-AS1 were confirmed by
qRT–PCR in normal human astrocytes and two glioma cell lines,
as well as in tumors and adjacent normal tissues from 24 glioma
patients (Supplementary Table S4). The results revealed that SNAI3-
AS1 was significantly downregulated in glioma cell lines and glioma
samples (Figures 10B, C, paired t-test). The low expression of its
target genes in LGG and GBM was also validated by the GEPIA
database (Figure 10D), and the quantity and intensity of the target
genes’ immunohistochemical staining in pathological specimens
(Figures 10E–G) agreed with the findings above.

4 Discussion

Existing risk prediction models for glioma are still insufficient
due to its complicated molecular and cellular heterogeneity, and
glioma’s high recurrence rate is the leading cause of its mortality
(Gusyatiner and Hegi, 2018; Lapointe et al., 2018). To reduce the risk
of mortality and recurrence of glioma, a new prognostic model for
glioma is urgently needed, and individualized treatment strategies
should be developed based on the prognostic model for glioma.
Early diagnosis of glioma and timely treatment of recurrences can be
achieved if glioma recurrences are detected as soon as possible, aided
by close follow-up of high-risk groups.

In this study, SRlncRNAs were screened by calculating the
Pearson correlation between lncRNAs and senescence-related
genes. Furthermore, LASSO and Cox regression were utilized to
obtain the following 6 prognostic SRlncRNAs: SNAI3-AS1, CRNDE,
AGAP2-AS1, HOXD-AS2, PAXIP1-AS2, WAC-AS1. The
6 SRlncRNAs were used to establish a risk model for predicting
glioma outcomes.

In the current study, all these 6 SRlncRNAs have been previously
shown to play significant roles in the pathogenesis and prognosis of
cancers. Among them, (Chen et al., 2020), SNAI3-AS1 promoted the
proliferation and metastasis of hepatocellular carcinoma by
regulating the UPF1/Smad7 signaling pathway (Li et al., 2019b),
and SNAI3-AS1 can also promote PEG10-mediated proliferation

FIGURE 7
(A) Gene Ontology (GO) and (B) KEGG analyses of the 6 SRlncRNAs by GSEA.
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and metastasis by decoying miR-27a-3p and miR-34a-5p in
hepatocellular carcinoma (Li et al., 2020). (Lapointe et al., 2018)
CRNDE could regulate the progression and chemoresistance of CRC

viamodulating the expression levels of miR-181a-5p and the activity
of Wnt/β-catenin signaling (Han et al., 2017), and CRNDE
attenuates chemoresistance in gastric cancer via SRSF6-regulated

FIGURE 8
(A) ssGSEA algorithm was used to calculate the infiltration levels of 16 immune cells. (B). The correlation between the predictive signature and
13 immun-related functions. (C). The immune checkpoint. (D). The immune subtype (C1-C6). ssGSEA, singlesample gene set enrichment analysis; *p <
0.05; **p < 0.01; ***p < 0.001; ns, non-significant.
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alternative splicing of PICALM (Zhang et al., 2021). (Louis et al.,
2021) AGAP2-AS1 could be promising predictive biomarker and
therapeutic target for HER-2+ breast cancer patients (Han et al.,

2021), and AGAP2-AS1 regulated the proliferation andmigration of
pancreatic cancer partly through suppressing ANKRD1 and
ANGPTL4 (Hui et al., 2019). (Brandner et al., 2022) HOXD-AS2

FIGURE 9
Correlation between tumor-infiltrating immune cells and risk prognosis signature. (A) The proportion of 22 immune cell subtypes. (B) The
correlation between the signature and 13 immune-related functions. (C–F) Estimate immune infiltrating score.
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could promote glioblastoma cell proliferation, migration and
invasion by regulating the miR-3681–5p/MALT1 signaling
pathway (Zhong and Cai, 2021), (Xu et al., 2022) TENT4A
indirectly regulatesRAD18 via the tumor suppressor CYLD and
via PAXIP1-AS2 in endometrial cancer (Swain et al., 2021).
(Delgado-Lopez and Corrales-Garcia, 2016) WAC-AS1 can
regulate ARPP19 to promote glycolysis and proliferation by
sponging miR-320d in hepatocellular carcinoma (Xia et al.,
2021). More study is needed to determine exactly how these
lncRNAs impact the prognosis of patients with glioblastoma via
cellular senescence.

Applying the prognostic model to the TCGA dataset, LGGGBM
patients were divided into high-risk and low-risk groups. The
SRlncRNA signature was validated by the ROC curve, and the
AUC value for the risk score-dependent ROC curve was 0.946,
which was more sensitive than the AUC of glioma grade. The risk
model time dependent AUCs for 1, 3 and 5 years were 0.904, 0.947,
and 0.897, respectively, revealing that the SRlncRNA signature
performed well in survival prediction.

According to the GSEA results, the differentially expressed genes of
the high-risk group and low-risk group were enriched in immune
response to tumor cells, mismatch repair, p53 signaling pathway,
mTOR signaling pathways, and Wnt signaling pathways. These
findings revealed that gene expression differed between the high-risk
group and the low-risk group, and SRlincRNA risk scores were linked to
the initiation and progression of glioma. In general, the risk score of
SRlincRNAs was a fairly accurate predictor of glioma outcomes.

Furthermore, several cancer-promoting or tumor-
suppressing lncRNAs, such as NEAT1, H19, NRON, LUCAT1,
and HOTAIR, can be found not only in malignant cells but also in
tumor-specific immune cells (Willingham et al., 2005; Barnes
et al., 2013; Yao et al., 2018; Shin et al., 2019; Agarwal et al., 2020).
The immunological functions of cancer-promoting and cancer-
suppressing lncRNAs suggest that lncRNAs play a critical role in
regulating tumor-immune cell crosstalk during cancer formation
and progression (Park et al., 2022). In this study, we explored the
correlation between SRlncRNAs and the distribution of tumor-
infiltrating immune cells. Apart from CD4 T-cell, the risk scores
were shown to be inversely linked with the degree of infiltration
of five immune cell types. Our findings indicate that the
SRlncRNA risk profile can discriminate between distinct types
of tumor-infiltrating immune cells in gliomas. Thus, for the first
time, this research explores the involvement of SRlncRNAs and
their relationship to the TIME in glioma.

However, we are aware of the limitations of our study. First,
we only obtained expression data and clinical data from TCGA
for gliomas, and we lacked clinical data for glial-associated
methylation. We are still using traditional statistical methods
for constructing risk score models of 6 SRlncRNAs, which have
been widely used, but more advanced methods are needed, and
our current models still need to be validated at the cellular and
tissue levels as well as in vivo experiments to ensure our model is
more reliable. Overall, we still have many shortcomings to
overcome.

FIGURE 10
The expression of the SRlncRNA and its target gene. (A) The expression of SNAI3-AS1 is shown in GEPIA; (B) qRT–PCRwas used to detect SNAI3-AS1
expression in cell lines. (C) The expression of SNAI3-AS1 was assessed using qRT–PCR in 24 pairs of glioma andmatched normal adjacent brain tissue. (D)
The expression of SNAI3-AS1 target gene (YPEL3). IHC staining for YPEL3 in (E) normal brain tissue, (F) LGG tissue, and (G) GBM tissue.
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5 Conclusion

The SRlncRNA signature is accurate and may be used to predict
the clinical outcomes and immune microenvironment of patients
with glioma, and it may be a useful biomarker and therapeutic target.
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