92 research outputs found

    Compact rectifier circuit design for harvesting gsm/900 ambient energy

    Get PDF
    In this paper, a compact rectifier, capable of harvesting ambient radio frequency (RF) power is proposed. The total size of the rectifier is 45.4 mm x 7.8 mm x 1.6 mm, designed on FR-4 substrate using a single-stage voltage multiplier at 900 MHz. GSM/900 is among the favorable RF Energy Harvesting (RFEH) energy sources that span over a wide range with minimal path loss and high input power. The proposed RFEH rectifier achieves measured and simulated RF-to-dc (RF to direct current) power conversion efficiency (PCE) of 43.6% and 44.3% for 0 dBm input power, respectively. Additionally, the rectifier attained 3.1 V DC output voltage across 2 k omega load terminal for 14 dBm and is capable of sensing low input power at -20 dBm. The work presents a compact rectifier to harvest RF energy at 900 MHz, making it a good candidate for low powered wireless communication systems as compares to the other state of the art rectifier

    Miniaturization Trends in Substrate Integrated Waveguide (SIW) Filters: A Review

    Get PDF
    This review provides an overview of the technological advancements and miniaturization trends in Substrate Integrated Waveguide (SIW) filters. SIW is an emerging planar waveguide structure for the transmission of electromagnetic (EM) waves. SIW structure consists of two parallel copper plates which are connected by a series of vias or continuous perfect electric conductor (PEC) channels. SIW is a suitable choice for designing and developing the microwave and millimetre-wave (mm-Wave) radio frequency (RF) components: because it has compact dimensions, low insertion loss, high-quality factor (QF), and can easily integrate with planar RF components. SIW technology enjoys the advantages of the classical bulky waveguides in a planar structure; thus is a promising choice for microwave and mm-Wave RF components

    Multimode HMSIW-based bandpass filter with improved selectivity for fifth-generation (5G) RF front-ends

    Get PDF
    This article presents the detailed theoretical, simulation, and experimental analysis of a half-mode substrate integrated waveguide (HMSIW)-based multimode wideband filter. A third-order, semicircular HMSIW filter is developed in this paper. A semicircular HMSIW cavity resonator is adopted to achieve wide band characteristics. A U-shaped slot (acts as a lambda/4 stub) in the center of a semicircular HMSIW cavity resonator and L-shaped open-circuited stubs are used to improve the out-of-band response by generating multiple transmission zeros (TZs) in the stop-band region of the filter. The TZs on either side of the passband can be controlled by adjusting dimensions of a U-shaped slot and L-shaped open-circuited stubs. The proposed filter covers a wide fractional bandwidth, has a lower insertion loss value, and has multiple TZs (which improves the selectivity). The simulated response of filter agrees well with the measured data. The proposed HMSIW bandpass filter can be integrated with any planar wideband communication system circuit, thanks to its planar structure

    A circular economy approach by co-gasification of water hyacinth and algae bloom for high-quality biochar production

    Get PDF
    Water hyacinth is of interest for biochar production due to its high biomass yields, high carbon content and environmental benefits of carbon sequestration and pollutants removal. Gasification technology has attracted considerable attention to design a renewable biochar production process to be performed on a larger scale for both separation and immobilization of contaminants from water hyacinth and the production of energy and multifunctional materials. The concept of the circular economy has become popular since it is a solution that will allow countries, firms and consumers to reduce harm to the environment and to close the loop of the product lifecycle through three main approaches of reusing, reducing and recycling materials, energy and waste. This study is focused on the sustainable management of water hyacinth biomass via gasification (300-900ËšC) to high-value products of biochar, bio-oil and syngas, from the perspective of energy consumption, heat reduction and recycling, emissions to the air and residues in the biochar based on circular economy towards environmental sustainability. The objective is to compare two different types of processes of mono-gasification and co-gasification for environmental, economic and social benefits. The environment, economy and society are inter-related to highlight the new insights for the biochar utilization and resonate with phytobioremediation strategy. The process is based on lab-scale gasifiers/pyrolyzers and a functional unit of a 20KW downdraft gasifier. In our previous experience, we have successfully converted waste biomass from horse manure in Singapore Turf Club to syngas and biochar in the downdraft gasifier. In this study, an equipment level of optimization is implemented for best-operating conditions to improve energy efficiency. In the first process of mono-gasification, biochar is produced from water hyacinth. The alternative to this method is co-gasification, where biochar is now produced with addition of algae bloom. The cost-benefit analysis and life cycle analysis demonstrate the difference in sustainability between these two processes, which offers a higher understanding of biochar production and hence determine which method would be the preferable sustainable practice. It is expected that the co-gasification process could increase the syngas, heat and energy production with high-quality biochar production. One of the major challenges is to guarantee the water hyacinth resources are conserved and used efficiently and affordably

    Conversion of the death inhibitor ARC to a killer activates pancreatic β cell death in diabetes

    Get PDF
    Loss of insulin-secreting pancreatic β cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains β cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce β cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. β cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by β cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of β cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents β cell death and metabolic abnormalities. These data uncover a pathway for β cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome

    RNAi-Mediated Knock-Down of Arylamine N-acetyltransferase-1 Expression Induces E-cadherin Up-Regulation and Cell-Cell Contact Growth Inhibition

    Get PDF
    Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in cell morphology that was accompanied by an increase in cell-cell contact growth inhibition and a loss of cell viability at confluence. NAT1 knock-down also led to attenuation in anchorage independent growth in soft agar. Loss of NAT1 led to the up-regulation of E-cadherin mRNA and protein levels. This change in E-cadherin was not attributed to RNAi off-target effects and was also observed in the prostate cancer cell-line 22Rv1. In vivo, NAT1 knock-down cells grew with a longer doubling time compared to cells stably transfected with a scrambled RNAi or to parental HT-29 cells. This study has shown that NAT1 affects cell growth and morphology. In addition, it suggests that NAT1 may be a novel drug target for cancer therapeutics

    Somatic mutations of CADM1 in aldosterone-producing adenomas and gap junction-dependent regulation of aldosterone production

    Get PDF
    Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production
    • …
    corecore