151 research outputs found

    A novel solution for seepage problems using physics-informed neural networks

    Full text link
    A Physics-Informed Neural Network (PINN) provides a distinct advantage by synergizing neural networks' capabilities with the problem's governing physical laws. In this study, we introduce an innovative approach for solving seepage problems by utilizing the PINN, harnessing the capabilities of Deep Neural Networks (DNNs) to approximate hydraulic head distributions in seepage analysis. To effectively train the PINN model, we introduce a comprehensive loss function comprising three components: one for evaluating differential operators, another for assessing boundary conditions, and a third for appraising initial conditions. The validation of the PINN involves solving four benchmark seepage problems. The results unequivocally demonstrate the exceptional accuracy of the PINN in solving seepage problems, surpassing the accuracy of FEM in addressing both steady-state and free-surface seepage problems. Hence, the presented approach highlights the robustness of the PINN and underscores its precision in effectively addressing a spectrum of seepage challenges. This amalgamation enables the derivation of accurate solutions, overcoming limitations inherent in conventional methods such as mesh generation and adaptability to complex geometries

    Systemic-Lupus-Erythematosus-Related Acute Pancreatitis: A Cohort from South China

    Get PDF
    Acute pancreatitis (AP) is a rare but life-threatening complication of SLE. The current study evaluated the clinical characteristics and risk factors for the mortality of patients with SLE-related AP in a cohort of South China. Methods. Inpatient medical records of SLE-related AP were retrospectively reviewed. Results. 27 out of 4053 SLE patients were diagnosed as SLE-related AP, with an overall prevalence of 0.67%, annual incidence of 0.56‰ and mortality of 37.04%. SLE patients with AP presented with higher SLEDAI score (21.70 ± 10.32 versus 16.17 ± 7.51, P = 0.03), more organ systems involvement (5.70 ± 1.56 versus 3.96 ± 1.15, P = 0.001), and higher mortality (37.04% versus 0, P = 0.001), compared to patients without AP. Severe AP (SAP) patients had a significant higher mortality rate compared to mild AP (MAP) (75% versus 21.05%, P = 0.014). 16 SLE-related AP patients received intensive GC treatment, 75% of them exhibited favorable prognosis. Conclusion. SLE-related AP is rare but concomitant with high mortality in South Chinese people, especially in those SAP patients. Activity of SLE, multiple-organ systems involvement may attribute to the severity and mortality of AP. Appropriate glucocorticosteroid (GC) treatment leads to better prognosis in majority of SLE patients with AP

    Filter-informed Spectral Graph Wavelet Networks for Multiscale Feature Extraction and Intelligent Fault Diagnosis

    Full text link
    Intelligent fault diagnosis has been increasingly improved with the evolution of deep learning (DL) approaches. Recently, the emerging graph neural networks (GNNs) have also been introduced in the field of fault diagnosis with the goal to make better use of the inductive bias of the interdependencies between the different sensor measurements. However, there are some limitations with these GNN-based fault diagnosis methods. First, they lack the ability to realize multiscale feature extraction due to the fixed receptive field of GNNs. Secondly, they eventually encounter the over-smoothing problem with increase of model depth. Lastly, the extracted features of these GNNs are hard to understand owing to the black-box nature of GNNs. To address these issues, a filter-informed spectral graph wavelet network (SGWN) is proposed in this paper. In SGWN, the spectral graph wavelet convolutional (SGWConv) layer is established upon the spectral graph wavelet transform, which can decompose a graph signal into scaling function coefficients and spectral graph wavelet coefficients. With the help of SGWConv, SGWN is able to prevent the over-smoothing problem caused by long-range low-pass filtering, by simultaneously extracting low-pass and band-pass features. Furthermore, to speed up the computation of SGWN, the scaling kernel function and graph wavelet kernel function in SGWConv are approximated by the Chebyshev polynomials. The effectiveness of the proposed SGWN is evaluated on the collected solenoid valve dataset and aero-engine intershaft bearing dataset. The experimental results show that SGWN can outperform the comparative methods in both diagnostic accuracy and the ability to prevent over-smoothing. Moreover, its extracted features are also interpretable with domain knowledge

    Periweaning Failure to Thrive Syndrome (PFTS): Is There a Genetic Component?

    Get PDF
    Periweaning Failure to Thrive Syndrome (PFTS) is a serious and potentially fatal disorder with variable morbidity and mortality rates that have been reported in US and Canadian farms. A genetic basis has been hypothesized. To investigate what regions of the genome could be linked to that, a total of 70 affected and 37 non-affected piglets were genotyped with over 60,000 genetic markers to investigate genetic differences between the two groups. This allows for the identification of genomic regions that could be linked to resistance to the disease providing new insights and knowledge on the genetic basis of this syndrome

    Learning Profitable NFT Image Diffusions via Multiple Visual-Policy Guided Reinforcement Learning

    Full text link
    We study the task of generating profitable Non-Fungible Token (NFT) images from user-input texts. Recent advances in diffusion models have shown great potential for image generation. However, existing works can fall short in generating visually-pleasing and highly-profitable NFT images, mainly due to the lack of 1) plentiful and fine-grained visual attribute prompts for an NFT image, and 2) effective optimization metrics for generating high-quality NFT images. To solve these challenges, we propose a Diffusion-based generation framework with Multiple Visual-Policies as rewards (i.e., Diffusion-MVP) for NFT images. The proposed framework consists of a large language model (LLM), a diffusion-based image generator, and a series of visual rewards by design. First, the LLM enhances a basic human input (such as "panda") by generating more comprehensive NFT-style prompts that include specific visual attributes, such as "panda with Ninja style and green background." Second, the diffusion-based image generator is fine-tuned using a large-scale NFT dataset to capture fine-grained image styles and accessory compositions of popular NFT elements. Third, we further propose to utilize multiple visual-policies as optimization goals, including visual rarity levels, visual aesthetic scores, and CLIP-based text-image relevances. This design ensures that our proposed Diffusion-MVP is capable of minting NFT images with high visual quality and market value. To facilitate this research, we have collected the largest publicly available NFT image dataset to date, consisting of 1.5 million high-quality images with corresponding texts and market values. Extensive experiments including objective evaluations and user studies demonstrate that our framework can generate NFT images showing more visually engaging elements and higher market value, compared with SOTA approaches

    Autoimmune and neuropsychiatric phenotypes in a Mecp2 transgenic mouse model on C57BL/6 background

    Get PDF
    IntroductionSystemic Lupus Erythematosus (SLE) impacts the central nervous system (CNS), leading to severe neurological and psychiatric manifestations known as neuropsychiatric lupus (NPSLE). The complexity and heterogeneity of clinical presentations of NPSLE impede direct investigation of disease etiology in patients. The limitations of existing mouse models developed for NPSLE obstruct a comprehensive understanding of this disease. Hence, the identification of a robust mouse model of NPSLE is desirable.MethodsC57BL/6 mice transgenic for human MeCP2 (B6.Mecp2Tg1) were phenotyped, including autoantibody profiling through antigen array, analysis of cellularity and activation of splenic immune cells through flow cytometry, and measurement of proteinuria. Behavioral tests were conducted to explore their neuropsychiatric functions. Immunofluorescence analyses were used to reveal altered neurogenesis and brain inflammation. Various signaling molecules implicated in lupus pathogenesis were examined using western blotting.ResultsB6.Mecp2Tg1 exhibits elevated proteinuria and an overall increase in autoantibodies, particularly in female B6.Mecp2Tg1 mice. An increase in CD3+CD4+ T cells in the transgenic mice was observed, along with activated germinal center cells and activated CD11b+F4/80+ macrophages. Moreover, the transgenic mice displayed reduced locomotor activity, heightened anxiety and depression, and impaired short-term memory. Immunofluorescence analysis revealed IgG deposition and immune cell infiltration in the kidneys and brains of transgenic mice, as well as altered neurogenesis, activated microglia, and compromised blood-brain barrier (BBB). Additionally, protein levels of various key signaling molecules were found to be differentially modulated upon MeCP2 overexpression, including GFAP, BDNF, Albumin, NCoR1, mTOR, and NLRP3.DiscussionCollectively, this work demonstrates that B6.Mecp2Tg1 mice exhibit lupus-like phenotypes as well as robust CNS dysfunctions, suggesting its utility as a new animal model for NPSLE

    Combinatorial analyses reveal cellular composition changes have different impacts on transcriptomic changes of cell type specific genes in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) brains are characterized by progressive neuron loss and gliosis. Previous studies of gene expression using bulk tissue samples often fail to consider changes in cell-type composition when comparing AD versus control, which can lead to differences in expression levels that are not due to transcriptional regulation. We mined five large transcriptomic AD datasets for conserved gene co-expression module, then analyzed differential expression and differential co-expression within the modules between AD samples and controls. We performed cell-type deconvolution analysis to determine whether the observed differential expression was due to changes in cell-type proportions in the samples or to transcriptional regulation. Our findings were validated using four additional datasets. We discovered that the increased expression of microglia modules in the AD samples can be explained by increased microglia proportions in the AD samples. In contrast, decreased expression and perturbed co-expression within neuron modules in the AD samples was likely due in part to altered regulation of neuronal pathways. Several transcription factors that are differentially expressed in AD might account for such altered gene regulation. Similarly, changes in gene expression and co-expression within astrocyte modules could be attributed to combined effects of astrogliosis and astrocyte gene activation. Gene expression in the astrocyte modules was also strongly correlated with clinicopathological biomarkers. Through this work, we demonstrated that combinatorial analysis can delineate the origins of transcriptomic changes in bulk tissue data and shed light on key genes and pathways involved in AD
    corecore