2 research outputs found

    Janus Carbon Nanotube@poly(butylene adipate-co-terephthalate) Fabric for Stable and Efficient Solar-Driven Interfacial Evaporation

    No full text
    Solar-driven seawater desalination is considered a promising method for alleviating the water crisis worldwide. In recent years, significant efforts have been undertaken to optimize heat management and minimize salt blockage during solar-driven seawater desalination. However, it remains challenging to achieve an efficient and stable seawater evaporator simply and practically. Here, we designed and prepared a novel three-dimensional (3D) water channel evaporator (3D WCE) equipped with a Janus CNT@PBAT fabric (JCPF). The as-prepared Janus CNT@PBAT fabric has broad-band light absorption (∼97.8%), excellent superhydrophobicity (∼162°), and photothermal properties. After optimizing the structure of the thermal insulator, our designed evaporator could realize the equilibrium between enhanced thermal management and sufficient water supply. As a result, the as-prepared evaporator achieved an excellent evaporation rate of 1.576 kg·m–2·h–1 and an energy efficiency of over 92.7% under 1 sun irradiation in 3.5 wt % saline water. Moreover, this evaporator also revealed good salt rejection performance compared to the traditional two-dimensional (2D) water channel evaporator (2D WCE) in high saline water, which could maintain stable evaporation rates under long-term evaporation of 8 h. Our study may develop a simple method for the design and fabrication of a low-cost, effective, and stable solar-driven evaporator for seawater desalination

    Small regulatory RNA RSaX28 promotes virulence by reinforcing the stability of RNAIII in community-associated ST398 clonotype <i>Staphylococcus aureus</i>

    No full text
    Staphylococcus aureus (S. aureus) is a notorious pathogen that cause metastatic or complicated infections. Hypervirulent ST398 clonotype strains, remarkably increased in recent years, dominated Community-associated S. aureus (CA-SA) infections in the past decade in China. Small RNAs like RNAIII have been demonstrated to play important roles in regulating the virulence of S. aureus, however, the regulatory roles played by many of these sRNAs in the ST398 clonotype strains are still unclear. Through transcriptome screening and combined with knockout phenotype analysis, we have identified a highly transcribed sRNA, RSaX28, in the ST398 clonotype strains. Sequence analysis revealed that RSaX28 is highly conserved in the most epidemic clonotypes of S. aureus, but its high transcription level is particularly prominent in the ST398 clonotype strains. Characterization of RSaX28 through RACE and Northern blot revealed its length to be 533nt. RSaX28 is capable of promoting the hemolytic ability, reducing biofilm formation capacity, and enhancing virulence of S. aureus in the in vivo murine infection model. Through IntaRNA prediction and EMSA validation, we found that RSaX28 can specifically interact with RNAIII, promoting its stability and positively regulating the translation of downstream alpha-toxin while inhibiting the translation of Sbi, thereby regulating the virulence and biofilm formation capacity of the ST398 clonotype strains. RSaX28 is an important virulence regulatory factor in the ST398 clonotype S. aureus and represents a potential important target for future treatment and immune intervention against S. aureus infections.</p
    corecore