10 research outputs found

    Blood-coated sensor for high-throughput ptychographic cytometry on a Blu-ray disc

    Full text link
    Blu-ray drive is an engineering masterpiece that integrates disc rotation, pickup head translation, and three lasers in a compact and portable format. Here we integrate a blood-coated image sensor with a modified Blu-ray drive for high-throughput cytometric analysis of various bio-specimens. In this device, samples are mounted on the rotating Blu-ray disc and illuminated by the built-in lasers from the pickup head. The resulting coherent diffraction patterns are then recorded by the blood-coated image sensor. The rich spatial features of the blood-cell monolayer help down-modulate the object information for sensor detection, thus forming a high-resolution computational bio-lens with a theoretically unlimited field of view. With the acquired data, we develop a lensless coherent diffraction imaging modality termed rotational ptychography for image reconstruction. We show that our device can resolve the 435 nm linewidth on the resolution target and has a field of view only limited by the size of the Blu-ray disc. To demonstrate its applications, we perform high-throughput urinalysis by locating disease-related calcium oxalate crystals over the entire microscope slide. We also quantify different types of cells on a blood smear with an acquisition speed of ~10,000 cells per second. For in vitro experiment, we monitor live bacterial cultures over the entire Petri dish with single-cell resolution. Using biological cells as a computational lens could enable new intriguing imaging devices for point-of-care diagnostics. Modifying a Blu-ray drive with the blood-coated sensor further allows the spread of high-throughput optical microscopy from well-equipped laboratories to citizen scientists worldwide

    Evaluations of Fracture Injection Pressure and Fracture Mouth Width during Separate-Layer Fracturing with Temporary Plugging

    No full text
    Separate-layer fracturing with temporary plugging (SLFTP) is a potential way to stimulate multiple layer reservoirs due to its low cost, low risk, and high efficiency. In this study, based on the cohesive zone model (CZM), a 3D fully fluid-solid coupling and multiple layer model is established to investigate factors influencing fracture injection pressure and fracture mouth width. The cohesive layer properties are based on the reported study, which have been validated through a series of numerical experiments. Innovatively, the spring model is innovatively proposed to represent the plugging effect of diverting agents and prop the aperture of the previous fractures. Simulation results reveal that the effects of previous fractures in multiple layer formations can be neglected, which is quite different from multistage fracturing for horizontal wells. Fracture injection pressure can be evaluated more accurately by taking the following factors into consideration: the minimum horizontal principal stress, rock tensile strength, injection rate, and pore pressure enhancement. Further, fracture mouth width is strongly influenced by rock tensile strength, Young’s modulus, and injection rate. This study provides a guidance for candidate well selection and diverting agent optimization during SLFTP in multilayer formations

    Label-Free ZnIn2S4/UiO-66-NH2 Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine

    No full text
    Considering that simultaneous detection of xanthine (XA) and hypoxanthine (HXA) has been proved to be a reliable and feasible method for assessing fish freshness, a novel electrochemical sensing platform based on the ZnIn2S4/UiO-66-NH2 modified glassy carbon electrode (GCE) was constructed in this study for XA and HXA determination. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) were performed to exhibit the morphology and structural characteristics of ZnIn2S4/UiO-66-NH2. The Brunauer–Emmett–Teller (BET) displayed that the introduction of UiO-66-NH2 can improve the specific surface area of the hybrid. Besides, the electrochemical sensing performance of ZnIn2S4/UiO-66-NH2 was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). For simultaneously detecting XA and HXA, the fabricated electrochemical sensor shows wide linear ranges (0.025–40 µM and 0.3–40 µM) with low detection limits (0.0083 µM and 0.1 µM). This sensor also has 96–103% recovery in detecting XA and HXA content in large yellow croaker meat samples, demonstrating a promising application in the marine food industry

    Label-Free ZnIn<sub>2</sub>S<sub>4</sub>/UiO-66-NH<sub>2</sub> Modified Glassy Carbon Electrode for Electrochemically Assessing Fish Freshness by Monitoring Xanthine and Hypoxanthine

    No full text
    Considering that simultaneous detection of xanthine (XA) and hypoxanthine (HXA) has been proved to be a reliable and feasible method for assessing fish freshness, a novel electrochemical sensing platform based on the ZnIn2S4/UiO-66-NH2 modified glassy carbon electrode (GCE) was constructed in this study for XA and HXA determination. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) were performed to exhibit the morphology and structural characteristics of ZnIn2S4/UiO-66-NH2. The Brunauer–Emmett–Teller (BET) displayed that the introduction of UiO-66-NH2 can improve the specific surface area of the hybrid. Besides, the electrochemical sensing performance of ZnIn2S4/UiO-66-NH2 was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). For simultaneously detecting XA and HXA, the fabricated electrochemical sensor shows wide linear ranges (0.025–40 µM and 0.3–40 µM) with low detection limits (0.0083 µM and 0.1 µM). This sensor also has 96–103% recovery in detecting XA and HXA content in large yellow croaker meat samples, demonstrating a promising application in the marine food industry

    Recent advances in high-βN experiments and magnetohydrodynamic instabilities with hybrid scenarios in the HL-2A Tokamak

    No full text
    Over the past several years, high-βN experiments have been carried out on HL-2A. The high-βN is realized using double transport barriers (DTBs) with hybrid scenarios. A stationary high-βN (>2) scenario was obtained by pure neutral-beam injection (NBI) heating. Transient high performance was also achieved, corresponding to βN≥3, ne/neG∼0.6, H98∼1.5, fbs∼30%, q95∼4.0, and G∼0.4. The high-βN scenario was successfully modeled using integrated simulation codes, that is, the one modeling framework for integrated tasks (OMFIT). In high-βN plasmas, magnetohydrodynamic (MHD) instabilities are abundant, including low-frequency global MHD oscillation with n = 1, high-frequency coherent mode (HCM) at the edge, and neoclassical tearing mode (NTM) and Alfvénic modes in the core. In some high-βN discharges, it is observed that the NTMs with m/n=3/2 limit the growth of the plasma energy and decrease βN. The low-n global MHD oscillation is consistent with the coupling of destabilized internal (m/n = 1/1) and external (m/n = 3/1 or 4/1) modes, and plays a crucial role in triggering the onset of ELMs. Achieving high-βN on HL-2A suggests that core-edge interplay is key to the plasma confinement enhancement mechanism. Experiments to enhance βN will contribute to future plasma operation, such as international thermonuclear experimental reactor
    corecore