81 research outputs found

    Observation of a New Mechanism Balancing Hardening and Softening in Metals

    Get PDF
    <div><p>Plastic deformation of metals refines the microstructure and increases the strength through work hardening, but this effect of deformation is counterbalanced by dynamic recovery. After large strain, the microstructure typically shows a lamellar morphology, with finely spaced lamellar boundaries connected by triple junctions. Here, we report that mechanically assisted triple junction motion is an important contributor to dynamic recovery, leading to an almost steady state. Triple junction motion replaces two boundaries by one, while maintaining the structural morphology. The observation rationalizes both a decreasing work hardening rate and the approach to a dynamic equilibrium of structural refinement at large strains.</p></div

    Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging

    Get PDF
    Thehumanbrain is extraordinarily complex, and yet its origin is a simple tubular structure. Characterizing its anatomy at different stages of human fetal brain development not only aids in understanding this highly ordered process but also provides clues to detecting abnormalities caused by genetic or environmental factors. During the second trimester of human fetal development, neural structures in the brain undergo significant morphological changes. Diffusion tensor imaging (DTI), a novel method of magnetic resonance imaging, is capable of delineating anatomical components with high contrast and revealing structures at the microscopic level. In this study, high-resolution and high-signal-to-noise-ratio DTI data of fixed tissues of second-trimester human fetal brains were acquired and analyzed. DTI color maps and tractography revealed that important white matter tracts, such as the corpus callosum and uncinate and inferior longitudinal fasciculi, become apparent during this period. Three-dimensional reconstruction shows that major brain fissures appear while most of the cerebral surface remains smooth until the end of the second trimester. A dominant radial organization was identified at 15 gestational weeks, followed by both laminar and radial architectures in the cerebral wall throughout the remainder of the second trimester. Volumetric measurements of different structures indicate that the volumes of basal ganglia and ganglionic eminence increase along with that of the whole brain, while the ventricle size decreases in the later second trimester. The developing fetal brain DTI database presented can be used for education, as an anatomical research reference, and for data registration

    Laminated Ti-Al composites: Processing, structure and strength

    Get PDF
    Laminated Ti-Al composite sheets with different layer thickness ratios have been fabricated through hot pressing followed by multi-pass hot rolling at 500 °C.The laminated sheets show strong bonding with intermetallic interface layers of nanoscale thickness between the layers of Ti and Al. The mechanical properties of the composites with different volume fractions of Al from 10% to 67% show a good combination of strength and ductility. A constraint strain in the hot-rolled laminated structure between the hard and soft phases introduces an elastic-plastic deformation stage, which becomes more pronounced as the volume fraction of Al decreases. Moreover, the thin intermetallic interface layer may also contribute to the strength of the composites, and this effect increases with increasing volume fraction of the interface layer
    • …
    corecore