680 research outputs found

    Can adsorption be studied in the electrode potential range of severe hydrogen evolution

    Get PDF
    Surface enhanced Raman spectroscopy(SERS) has been applied to obtain structural information of surface species adsorbed at electrode surface in the electrode potential range of severe hydrogen evolution, which is very difficult to be gained by using most of spectroelectrochemical and conventional electrochemical methods

    Surface Raman spectroscopic investigation of pyridine adsorption at platinum electrodes - effects of potential and electrolyte

    Get PDF
    Surface enhanced Raman spectra of pyridine (Py) at Pt electrodes have been investigated as a function of potential and supporting electrolyte. The results show a large difference from those reported for coinage metal electrodes of Ag, Au and Cu, emphasising the effective involvement of chemical enhancement on Pt surfaces. At very negative (or positive) potentials, Raman spectra show the competitive coadsorption of hydrogen (or oxygen-containing species) with Py, and in acidic solutions, PyH+ ions prefer to dissociate into Py adsorbed on Pt surfaces even in the presence of chloride ions. The differences in the surface bonding strength for Py on Pt and coinage metal electrodes are explained in terms of the different electronic configurations of the metals

    Novel Tunable Fiber Optic Edge Filter Based on Modulating Chirp Rate of pi-Phase-Shifted Fiber Bragg Grating

    Get PDF
    We propose and experimentally demonstrate a novel tunable fiber optic edge filter based on modulating the chirp rate of a pi-phase-shifted fiber Bragg grating (FBG) operated in reflection mode. The phase shift induced notch in the reflection spectrum is utilized as the edge filter. The dependence of the pi-phase-shifted FBG's spectral response on the chirp rate has been numerically studied in detail and experimentally confirmed for the first time. The linear wavelength range of this edge filter can be tuned by changing the chirp rate of FBG. A fiber optic edge filter is further obtained experimentally and tested as a wavelength interrogator, which is in a good agreement with numerical results. The proposed edge filter has advantages of simple-structure, cost-effectiveness, high sensitivity, and flexible tunable, thus opening up some applications, especially as wavelength interrogator in small wavelength range

    Initial potential effect on the dissociative adsorption of methanol on a roughened platinum electrode in acidic solution

    Get PDF
    In situ Raman spectroscopic and voltammetric studies indicate that dissociative adsorption of methanol on the rough platinum electrode occurs in the hydrogen ad/desorption potential range, and the dissociative extent depends on the initial potential of the electrode before contacting methanol, in addition to the contacting time. As the dissociative product, carbon monoxide competes the site of strongly bound hydrogen preferentially, and shifts the ad/desorption potentials of weakly bound hydrogen towards more positive ones gradually with the increase of CO coverage. Whereas, formaldehyde dissociates more easily by far and completely suppresses H-adsorption. The confocal Raman spectroscopy developed on transition metals shows some intriguing advantages in investigating electrocatalytic oxidation of small organic molecules

    Three-dimensional micromachining for microsystems by confined etchant layer technique

    Get PDF
    The micromachining of GaAs with three different truly three-dimensional (3D) molds were performed by the confined etchant layer technique (CELT). The etched patterns were found, approximately, to be the negative copy of the 3D molds. The general comparison of CELT with the existing micromachining techniques, such as two-dimensional (2D) projection lithography and electro-discharge machining, was made. The replication of the complex microstructures down to micrometer scale has been done by CELT in a single step. The photoresist layer, together with the procedures of exposure, developing and removal of resist, could be eliminated. The advantages of CELT over the existing lithography techniques and its potential applications are discussed briefly. It has been shown that CELT could be developed as a complementary technique to the existing micromachining techniques in fabricating microdevices for microsystems. (C) 2001 Elsevier Science Ltd. All rights reserved

    Probing electrode/electrolyte interfacial structure in the potential region of hydrogen evolution by Raman spectroscopy

    Get PDF
    The detailed interfacial structure in the potential region of severe hydrogen evolution, to date, is far from clear due to lack of both experimental data and correlated theoretic models. It has been shown that it is possible to surmount, to some extent, the disturbance of the spectroelectrochemical measurement by strong hydrogen bubbling in the potential region of severe hydrogen evolution by using a surface enhancement effect and a thin-layer cell configuration. Using this approach, we have obtained surface enhanced Raman scattering (SERS) spectra of water at an Ag electrode at very negative potentials at various concentrations of NaClO4. To explain the abnormal reversal of the peak intensity ratio of the bending to the stretching vibration, a preliminary model of the electrode/electrolyte interface is presented. The water molecule is oriented with one hydrogen attached to the surface and the oxygen towards an adsorbed cation which is partially dehydrated owing to the very strong electrostatic force. Raman spectra of hydrogen bound at a Pt electrode in solutions of varying pH from 0 to 14 at potentials of mild hydrogen evolution have also been presented for the first time. The spectra reveal that the Pt-hydrogen interaction is influenced by both the potential and the interfacial structure. These primary studies may initiate more molecular-level research of electrochemical interfaces in the potential region of hydrogen evolution

    Influence of Ketotifen, Cromolyn Sodium, and Compound 48/80 on the survival rates after intestinal ischemia reperfusion injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mast cells were associated with intestinal ischemia-reperfusion injury, the study was to observe the influence of Ketotifen, Cromolyn Sdium(CS), and Compound 48/80(CP) on the survival rates on the third day after intestinal ischemia-reperfusion injury in rats.</p> <p>Methods</p> <p>120 healthy Sprague-Dawley rats were randomly divided into 5 groups, Sham-operated group (group S), model group (group M), group K, group C and group CP. Intestinal damage was triggered by clamping the superior mesenteric artery for 75 minutes, group K, C, and CP were treated with kotifen 1 mg·kg<sup>-1</sup>, CS 50 mg·kg<sup>-1</sup>, and CP 0.75 mg·kg<sup>-1 </sup>i.v. at 5 min before reperfusion and once daily for three days following reperfusion respectively. Survival rate in each group was recorded during the three days after reperfusion. All the surviving rats were killed for determining the concentration of serum glutamic-oxaloacetic transaminase(AST), glutamic pyruvic transaminase(ALT), the ratio of AST compare ALT(S/L), total protein(TP), albumin(ALB), globulin(GLB), the ratio of ALB compare GLB(A/G), phosphocreatine kinase(CK), lactate dehydrogenase(LDH), urea nitrogen(BUN) and creatinine(CRE) at the 3<sup>rd </sup>day after reperfusion. And ultrastructure of IMMC, Chiu's score, lung histology, IMMC counts, the levels of TNF-α, IL-1β, IL-6 and IL-10 of the small intestine were detected at the same time.</p> <p>Results</p> <p>Intestinal ischemia-reperfusion injury reduced the survival rate. The concentrations of TP, ALB and level of IL-10 in intestine in group M decreased significantly while the concentrations of S/L, LDH and the levels of IL-6 and TNF-α in intestine increased significantly compared with group S (<it>P </it>< 0.05). Treatment with Ketotifen and CS increased the survival rate compared with group M (<it>P </it>< 0.05), attenuated the down-regulation or up-regulation of the above index (<it>P </it>< 0.05). Treatment with CP decreased the survival rate on the 3<sup>rd </sup>day after reperfusion compared with group M(<it>P </it>< 0.05). Group K and C had better morphology in IMMC in the small intestine and in the lungs than in group M and CP, although the Chiu's score and IMMC counts remained the same in the five groups(<it>P </it>> 0.05).</p> <p>Conclusion</p> <p>Mast cell inhibition after ischemia prior to reperfusion and following reperfusion may decrease the multi-organ injury induced by intestine ischemia reperfusion, and increase the survival rates.</p

    Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium-oxygen batteries

    Get PDF
    © 2015 Nature Publishing Group All rights reserved. Cathode catalysts are the key factor in improving the electrochemical performance of lithium-oxygen (Li-O2) batteries via their promotion of the oxygen reduction and oxygen evolution reactions (ORR and OER). Generally, the catalytic performance of nanocrystals (NCs) toward ORR and OER depends on both composition and shape. Herein, we report the synthesis of polyhedral Au NCs enclosed by a variety of index facets: cubic gold (Au) NCs enclosed by {100} facets; truncated octahedral Au NCs enclosed by {100} and {110} facets; and trisoctahedral (TOH) Au NCs enclosed by 24 high-index {441} facets, as effective cathode catalysts for Li-O2 batteries. All Au NCs can significantly reduce the charge potential and have high reversible capacities. In particular, TOH Au NC catalysts demonstrated the lowest charge-discharge overpotential and the highest capacity of ∼ 20 298 mA h g-1. The correlation between the different Au NC crystal planes and their electrochemical catalytic performances was revealed: high-index facets exhibit much higher catalytic activity than the low-index planes, as the high-index planes have a high surface energy because of their large density of atomic steps, ledges and kinks, which can provide a high density of reactive sites for catalytic reactions

    Surface enhanced Raman scattering from bare cobalt electrode surfaces

    Get PDF
    Surface enhanced Raman spectra (SERS) of adsorbed species from a bare cobalt (Co) bulk electrode were observed for the first time with confocal Raman microscopy. A combined AFM, Raman and electrochemical study shows that a proper roughening procedure is vitally important for obtaining good-quality surface Raman spectra from the Co electrode. The surface enhancement factor ranges from 2 to 3 orders of magnitude, depending critically on the surface roughening procedure. The present study provides a bright prospect for the wide investigation of systems of practical application

    The clinicopathologic observation, c-KIT gene mutation and clonal status of gastrointestinal stromal tumor in the sacrum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is very rare that gastrointestinal stromal tumor (GIST) occurs in the sacrum. Only one case of GIST occuring in the sacral region, with intracranial metastasis, has been reported in the literature. Moreover, only few cases have been published in literature about its clonal origin.</p> <p>Case presentation</p> <p>In this report, we present a rare case of GIST occuring in the sacrum and describe its clinicopathologic features, c-KIT gene mutation and clonal status. Microscopically, the lesion was composed of spindle cells arranged in cords, knitted and whirlpool patterns. Trabecula of bone were found in the lesion. The cytoplasm of tumor cells were abundant, and the nuclei were fusiform. Mitotic figures were rare. Immunohistochemically, the tumor cells showed positive reactivity for CD117 and CD34. On mutation analysis, a c-KIT gene mutation was found in exon 11. The result of clonal analysis demonstrated that the GIST was monoclonal.</p> <p>Conclusion</p> <p>In summary, we showed that tumor material, phenotypically identical with GISTs was found in the sacrum. It is difficult to differentiate GISTs from other spindle cell tumors, hence the need for immunohistochemistry, the examination of c-KIT gene amplification and sequencing.</p
    corecore