7 research outputs found

    Water-Saving Efficiency and Inequality of Virtual Water Trade in China

    No full text
    Virtual water trade is widely considered as a potential method to solve local water shortage and unequal distribution. However, limited research investigated water-saving efficiency and water inequality of inter-provincial virtual water trade. In this study, we sought to explore this issue within China based on the 2015 input-output data. A multi-regional input-output model and a modified input-output model were used to estimate the virtual water trade and its impact on water-saving and water inequality. Our results suggest that: (1) The total virtual water flow across the country is 200.03 × 109 m3, which accounts for 32.77% of water withdrawal. The agriculture sector contributes the highest proportion (73.99%) to virtual water flow. (2) Virtual water trade could decrease water withdrawal by 446.08 × 109 m3 compared with withdrawal under no-trade situation at a national level, and 22 provinces could gain benefits through inter-provincial trade with a positive water-saving efficiency index. (3) Virtual water trade also causes water inequality, which exacerbates water scarcity of exported provinces, especially in northwest provinces. (4) There is a conflict between water conservation and water inequality, but different provinces show significant heterogeneity

    Virtual Water Trade in the Yellow River Economic Belt: A Multi-Regional Input-Output Model

    No full text
    The sustainable and efficient use of water resources has gained wide social concern, and the key point is to investigate the virtual water trade of the water-scarcity region and optimize water resources allocation. In this paper, we apply a multi-regional input-output model to analyze patterns and the spillover risks of the interprovincial virtual water trade in the Yellow River Economic Belt, China. The results show that: (1) The agriculture and supply sector as well as electricity and hot water production own the largest total water use coefficient, being high-risk water use sectors in the Yellow River Economic Belt. These two sectors also play a major role in the inflow and outflow of virtual water; (2) The overall situation of the Yellow River Economic Belt is virtual water inflow, but the pattern of virtual water trade between eastern and western provinces is quite different. Shandong, Henan, Shaanxi, and Inner Mongolia belong to the virtual water net inflow area, while the virtual water net outflow regions are concentrated in Shanxi, Gansu, Xinjiang, Ningxia, and Qinghai; (3) Due to higher water resource stress, Shandong and Shanxi suffer a higher cumulative risk through virtual water trade. Also, Shandong, Henan, and Inner Mongolia have a higher spillover risk to other provinces in the Yellow River Economic Belt

    Elastin-like recombinamer-mediated hierarchical mineralization coatings on Zr-16Nb-xTi (x=4,16wt%) alloy surfaces improve biocompatibility

    No full text
    The biocompatibility of biomedical materials is vital to their applicability and functionality. However, modifying surfaces for enhanced biocompatibility using traditional surface treatment techniques is challenging. We employed a mineralizing elastin-like recombinamer (ELR) self-assembling platform to mediate mineralization on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces, resulting in the modification of surface morphology and bioactivity while improving the biocompatibility of the material. We modulated the level of nanocrystal organization by adjusting the cross-linker ratio. Nanoindentation tests revealed that the mineralized configuration had nonuniformity with respect to Young's modulus and hardness, with the center areas having higher values (5.626 ± 0.109 GPa and 0.264 ± 0.022 GPa) compared to the edges (4.282 ± 0.327 GPa and 0.143 ± 0.023 GPa). The Scratch test results indicated high bonding strength (2.668 ± 0.117 N) between the mineralized coating and the substrate. Mineralized Zr-16Nb-xTi (x = 4,16 wt%) alloys had higher viability compared to untreated alloys, which exhibited high cell viability (>100 %) after 5 days and high alkaline phosphatase activity after 7 days. Cell proliferation assays indicated that MG 63 cells grew faster on mineralized surfaces than on untreated surfaces. Scanning electron microscopy imaging confirmed that the cells adhered and spread well on mineralized surfaces. Furthermore, hemocompatibility test results revealed that all mineralized samples were non-hemolytic. Our results demonstrate the viability of employing the ELR mineralizing platform to improve alloy biocompatibility. [Abstract copyright: Copyright © 2023. Published by Elsevier B.V.

    Optimal Design of High-Strength Ti‒Al‒V‒Zr Alloys through a Combinatorial Approach

    No full text
    The influence of various Zr contents (0–45 wt.%) on the microstructure and mechanical properties of Ti6Al4V alloy was investigated through a combinatorial approach. The diffusion multiples of Ti6Al4V–Ti6Al4V20Fe–Ti6Al4V20Cr–Ti6Al4V20Mo–Ti6Al4V45Zr were manufactured and diffusion-annealed to obtain a large composition space. Scanning electron microscopy, electron probe micro-analysis, and a microhardness system were combined to determine the relationships among the composition, microstructure, and hardness of these alloys. The Ti–6Al–4V–30Zr alloy was found to contain the thinnest α lath and showed peak hardness. X-ray diffraction and transmission electron microscope results indicated that after quenching from the β-field, the metastable α″-phase formed; moreover, at the secondary aging stage, the metastable α″-phase acted as precursor nucleation sites for the stable α-phase. The bulk Ti6Al4V30Zr alloy was manufactured. After aging at 550 °C, the alloy showed excellent balance of strength and ductility, and the tensile strength was 1464 MPa with a moderate elongation (8.3%). As the aging temperature increased, the tensile strength and yield strength of the alloys rose, but the total elongation decreased. The lamella thickness and volume fraction of the α-phase were the major factors that had great impacts on the mechanical properties
    corecore