42 research outputs found

    Pedestrian Detection aided by Deep Learning Semantic Tasks

    Full text link
    Deep learning methods have achieved great success in pedestrian detection, owing to its ability to learn features from raw pixels. However, they mainly capture middle-level representations, such as pose of pedestrian, but confuse positive with hard negative samples, which have large ambiguity, e.g. the shape and appearance of `tree trunk' or `wire pole' are similar to pedestrian in certain viewpoint. This ambiguity can be distinguished by high-level representation. To this end, this work jointly optimizes pedestrian detection with semantic tasks, including pedestrian attributes (e.g. `carrying backpack') and scene attributes (e.g. `road', `tree', and `horizontal'). Rather than expensively annotating scene attributes, we transfer attributes information from existing scene segmentation datasets to the pedestrian dataset, by proposing a novel deep model to learn high-level features from multiple tasks and multiple data sources. Since distinct tasks have distinct convergence rates and data from different datasets have different distributions, a multi-task objective function is carefully designed to coordinate tasks and reduce discrepancies among datasets. The importance coefficients of tasks and network parameters in this objective function can be iteratively estimated. Extensive evaluations show that the proposed approach outperforms the state-of-the-art on the challenging Caltech and ETH datasets, where it reduces the miss rates of previous deep models by 17 and 5.5 percent, respectively

    StableRep: Synthetic Images from Text-to-Image Models Make Strong Visual Representation Learners

    Full text link
    We investigate the potential of learning visual representations using synthetic images generated by text-to-image models. This is a natural question in the light of the excellent performance of such models in generating high-quality images. We consider specifically the Stable Diffusion, one of the leading open source text-to-image models. We show that (1) when the generative model is configured with proper classifier-free guidance scale, training self-supervised methods on synthetic images can match or beat the real image counterpart; (2) by treating the multiple images generated from the same text prompt as positives for each other, we develop a multi-positive contrastive learning method, which we call StableRep. With solely synthetic images, the representations learned by StableRep surpass the performance of representations learned by SimCLR and CLIP using the same set of text prompts and corresponding real images, on large scale datasets. When we further add language supervision, StableRep trained with 20M synthetic images achieves better accuracy than CLIP trained with 50M real images.Comment: code is available at: https://github.com/google-research/syn-rep-lear

    Improving CLIP Training with Language Rewrites

    Full text link
    Contrastive Language-Image Pre-training (CLIP) stands as one of the most effective and scalable methods for training transferable vision models using paired image and text data. CLIP models are trained using contrastive loss, which typically relies on data augmentations to prevent overfitting and shortcuts. However, in the CLIP training paradigm, data augmentations are exclusively applied to image inputs, while language inputs remain unchanged throughout the entire training process, limiting the exposure of diverse texts to the same image. In this paper, we introduce Language augmented CLIP (LaCLIP), a simple yet highly effective approach to enhance CLIP training through language rewrites. Leveraging the in-context learning capability of large language models, we rewrite the text descriptions associated with each image. These rewritten texts exhibit diversity in sentence structure and vocabulary while preserving the original key concepts and meanings. During training, LaCLIP randomly selects either the original texts or the rewritten versions as text augmentations for each image. Extensive experiments on CC3M, CC12M, RedCaps and LAION-400M datasets show that CLIP pre-training with language rewrites significantly improves the transfer performance without computation or memory overhead during training. Specifically for ImageNet zero-shot accuracy, LaCLIP outperforms CLIP by 8.2% on CC12M and 2.4% on LAION-400M. Code is available at https://github.com/LijieFan/LaCLIP

    Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need?

    Full text link
    The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of self-distillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms. Code is available at: http://github.com/WangYueFt/rfs/.Comment: First two authors contributed equally. Project Page: https://people.csail.mit.edu/yuewang/projects/rfs/ Code: http://github.com/WangYueFt/rfs

    Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate

    Full text link
    Uncertainty estimation is an essential step in the evaluation of the robustness for deep learning models in computer vision, especially when applied in risk-sensitive areas. However, most state-of-the-art deep learning models either fail to obtain uncertainty estimation or need significant modification (e.g., formulating a proper Bayesian treatment) to obtain it. Most previous methods are not able to take an arbitrary model off the shelf and generate uncertainty estimation without retraining or redesigning it. To address this gap, we perform a systematic exploration into training-free uncertainty estimation for dense regression, an unrecognized yet important problem, and provide a theoretical construction justifying such estimations. We propose three simple and scalable methods to analyze the variance of outputs from a trained network under tolerable perturbations: infer-transformation, infer-noise, and infer-dropout. They operate solely during inference, without the need to re-train, re-design, or fine-tune the model, as typically required by state-of-the-art uncertainty estimation methods. Surprisingly, even without involving such perturbations in training, our methods produce comparable or even better uncertainty estimation when compared to training-required state-of-the-art methods.Comment: 18 pages, 13 figure
    corecore