5,555 research outputs found

    Using porous metals to enhance heat transfer in phase change materials (PCMs)

    Get PDF
    Heat transfer enhancement mechanism of Phase Change Materials (PCMs) by high-porosity metal foams was investigated in this study. The Darcy-Brinkman-Forchheimer modified flow model was employed in the numerical simulations to consider the non-Darcy effects in metal foams: viscous flow resistance and inertia flow resistance. Local Non-Thermal Equilibrium (LNTE) model was used to consider the temperature difference between PCM and metal foam. The results showed that in the solid and two-phase zone the heat transfer rate in PCMs was significantly increased by metal foams, whilst in the liquid zone, natural convection was found to be weakened by the large flow resistance of metal foams, despite which the overall heat transfer rate was still higher than the case where metal foams were not used. Metal foams of low porosity and high pore density were found to perform better than the ones of high porosity and low pore density

    Analytical considerations of flow boiling heat transfer in metal-foam filled tubes

    Get PDF
    Flow boiling in metal-foam filled tube was analytically investigated based on a modified microstructure model, an original boiling heat transfer model and fin analysis for metal foams. Microstructure model of metal foams was established, by which fiber diameter and surface area density were precisely predicted. The heat transfer model for flow boiling in metal foams was based on annular pattern, in which two phase fluid was composed by vapor region in the center of the tube and liquid region near the wall. However, it was assumed that nucleate boiling performed only in the liquid region. Fin analysis and heat transfer network for metal foams were integrated to obtain the convective heat transfer coefficient at interface. The analytical solution was verified by its good agreement with experimental data. The parametric study on heat transfer coefficient and boiling mechanism was also carried out

    Exergy optimisation for cascaded thermal storage

    Get PDF
    Cascaded thermal storage, consisting of multiple Phase Change Materials (PCMs) with different melting temperatures, has been proposed to solve the problem of poor heat transfer caused by unavoidable decrease of temperature differences during heat exchange process. This paper conducts a theoretical study of the overall thermal performance for a cascaded thermal storage system. Both heat transfer rate and exergy efficiency are taken into account. The main findings are: the cascaded arrangement of PCMs enhances the heat transfer rate by up to 30%, whilst it does not always improve the exergy efficiency (-15 to +30%). Enhanced heat transfer and reduced exergy efficiency can both be attributed to the larger temperature differences caused by the cascaded arrangement. A new parameter hex (exergy transfer rate) has been proposed to measure the overall thermal performance. It is defined as the product of heat transfer rate and exergy efficiency, representing the transfer rate of the utilisable thermal energy. The simulation results indicate that the cascaded thermal storage has higher overall thermal performance than the single-staged storage despite of higher exergy efficiency loss

    Heat transfer enhancement in phase change materials (PCMs) by metal foams and cascaded thermal energy storage

    Get PDF
    Low heat transfer performance has been the main problem restricting the use of Phase Change Materials (PCMs) in situations requiring rapid energy release or storage. Three innovative solutions are studied in this Thesis to improve heat transfer in PCMs. These include combining PCMs with metal foams, Cascaded Thermal Energy Storage (CTES) and Metal Foam-enhanced Cascaded Thermal Energy Storage (MF-CTES). Heat conduction is investigated in Chapter 3, in which it was found that metal foams can improve heat conduction of PCMs by 5–20 times. Natural convection is investigated in Chapter 4, in which metal foams were found to suppress natural convection due to their large flow resistances. Nevertheless, metal foams can still achieve a higher overall heat transfer rate (3–10 times) than PCMs without metal foams. CTES is examined in Chapter 5, with results showing that CTES has a higher heat transfer rate (30%) and a higher exergy transfer rate (22%) than Single-stage Thermal Energy Storage (STES). MF-CTES is proposed in Chapter 6; this is, to the best knowledge of the author, the first time that it has been investigated. MF-CTES was found to further improve the heat and exergy transfer of CTES by 2–7 times, meanwhile reducing melting time by 67%–87%

    Numerical investigations of heat transfer in phase change materials using non-equilibrium model

    Get PDF
    Phase change materials (PCMs) are drawing increasing attention of researchers nowadays, and they play a pivotal role in thermal energy storage (TES) used in renewable energy resources applications, since these renewable energy, such as solar energy, wind energy and tidal energy, are intermittent and not available at any time. However, most of PCMs suffer from low thermal conductivities prolonging the charging and discharging processes. Metal foams with relatively high thermal conductivities, are believed to be able to enhance heat transfer performance of PCMs for those applications. In this paper, a two-equation non-thermal equilibrium model has been employed to tackle the phase change heat transfer problem in PCMs composites embedded into metal foams. Numerical results show good agreement with experimental data, and indicate that a better heat transfer performance can be achieved by using the metal foams of smaller pore size and smaller porosity, and heat transfer performance of PCMs can be enhanced by up to 10 times by embedded metal foams into PCMs

    Numerical Study on Indoor Wideband Channel Characteristics with Different Internal Wall

    Get PDF
    Effects of material and configuration of the internal wall on the performance of wideband channel are investigated by using the Finite Difference Time-Domain (FDTD) method. The indoor wideband channel characteristics, such as the path-loss, Root-Mean-Square (RMS) delay spread and number of the multipath components (MPCs), are presented. The simulated results demonstrate that the path-loss and MPCs are affected by the permittivity, dielectric loss tangent and thickness of the internal wall, while the RMS delay spread is almost not relevant with the dielectric permittivity. Furthermore, the comparison of simulated result with the measured one in a simple scenario has validated the simulation study

    Dual sticky hierarchical Dirichlet process hidden Markov model and its application to natural language description of motions

    Get PDF
    In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov modle (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. The number of HMMs and the number of topics are both automatically determined. The sticky prior avoids redundant states and makes our HDP-HMM more effective to model multimodal observations. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. The sources and sinks in the scene are learnt by clustering endpoints (origins and destinations of trajectories). The semantic motion regions are learnt using the points in trajectories. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequences of atomic activities. the action represented by the trajectory can be described in natural language in as autometic a way as possible.The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene

    Flow and heat transfer in metal foam filled pipes under two extended Darcy models

    Get PDF
    The flow and heat transfer in pipes filled with metal foams were studied numerically.In this study,the two-equation model based on LNTE (Local Non-Thermal equilibrium) was employed as energy equations,furthermore the flow models extended by Brinkman and Brinkman-Forchheimer were employed as momentum equations respectively,and a comparison between these two models was made and analysed.The numerical results indicate that the velocity profiles under two models are different,but their temperature profiles are almost the same as each other,consequently,there are barely differences between the Nu numbers under two models.According to numerical results,the Nu number of metal-foam filled pipes is of the order of magnitude of 102~103,which is much bigger than that of bare pipes and conventional heat exchangers.The metal-foam filled pipes exhibit excellent heat transfer performance,however high pressure drop is produced at the same time.By using the program for heat transfer calculation of metal foam that is developed by us,someone can make optimization of heat transfer and pressure drop in practical applications
    • …
    corecore