33 research outputs found

    Visual identification of gut bacteria and determination of natural inhibitors using a fluorescent probe selective for PGP-1

    Get PDF
    PGP-1 is a bacterial hydrolase that can hydrolyze the amide bond of the L-pyroglutamate (L-pGlu) residue at the amino terminus of proteins and peptides. Guided by the biological function of PGP-1, an off-on NIR fluorescent probe DDPA was developed for the visual sensing of PGP-1 by conjugating pyroglutamic acid (recognition group) and DDAN (fluorophore). Using intestinal bacteria cultivation, eight bacteria strains with active PGP-1 were identified and cultivated efficiently using DDPA. In addition, three natural inhibitors against PGP-1 were isolated from the medical herb Psoralea corylifolia, which could be used to interfere with bacterial metabolism in the gut. As such, the fluorescent probe DDPA provides an efficient method and potential tool for the investigation of intestinal microbiota.</p

    A Molecular-Splicing Strategy for Constructing a Near-Infrared Fluorescent Probe for UDP-Glucuronosyltransferase 1A1

    Get PDF
    UDP-glucuronosyltransferase 1A1 (UGT1A1) is a vital metabolic enzyme responsible for the clearance of endogenous substances and drugs. Hitherto, the development of fluorescent probes for UGTs was severely restricted due to the poor isoform selectivity and on–off or blue-shifted fluorescence response. Herein, we established a novel “molecular-splicing” strategy to construct a highly selective near-infrared (NIR) fluorescent probe, HHC, for UGT1A1, which exhibited a NIR signal at 720 nm after UGT1A1 metabolism. HHC was then successfully used for the real-time imaging of endogenous UGT1A1 in living cells and animals and to monitor the bile excretion function. In summary, an isoform-specific NIR fluorescent probe has been developed for monitoring UGT1A1 activity in living systems, high-throughput screening of novel UGT1A1 inhibitors and visual evaluation of bile excretion function.</p

    ROS-dependent catalytic mechanism of melatonin metabolism and its application in the measurement of reactive oxygen

    Get PDF
    Melatonin (Mel) is an endogenous active molecule whose metabolism progress significantly influences its bioactivity. However, the detailed metabolic pathway of Mel in the pathological state has not yet been fully illustrated. In this study, 16 metabolites of Mel in cancer cells and human liver microsomes were identified, of which seven novel metabolites were newly discovered. Among them, 2-hydroxymelatonin (2-O-Mel), as the major metabolite in cancer cells, was revealed for the first time, which was different from the metabolite found in the human liver. Furthermore, CYP1A1/1A2- and reactive oxygen species (ROS)-mediated 2-hydroxylation reactions of Mel were verified to be the two metabolic pathways in the liver and cancer cells, respectively. ROS-dependent formation of 2-O-Mel was the major pathway in cancer cells. Furthermore, the underlying catalytic mechanism of Mel to 2-O-Mel in the presence of ROS was fully elucidated using computational chemistry analysis. Therefore, the generation of 2-O-Mel from Mel could serve as another index for the endogenous reactive oxygen level. Finally, based on the ROS-dependent production of 2-O-Mel, Mel was successfully used for detecting the oxygen-carrying capacity of hemoglobin in human blood. Our investigation further enriched the metabolic pathway of Mel, especially for the ROS-dependent formation of 2-O-Mel that serves as a diagnostic and therapeutic target for the rational use of Mel in clinics

    Rational Design of a Two-Photon Fluorescent Probe for Human Cytochrome P450 3A and the Visualization of Mechanism-Based Inactivation

    Get PDF
    Mechanism-based inactivation (MBI) can mediate adverse reactions and hepatotoxicity from drugs, which is a result of their conversion into highly reactive metabolites catalyzed by enzymes such as cytochrome P450 3A (CYP3A). In the present research, we optimized the key interaction domain of the fluorophore with the target protein to develop a two-photon fluorescent probe for CYP3A that is involved in the metabolism of more than half of all clinical drugs. The developed BN-1 probe exhibited appropriate selectivity and sensitivity for the semi-quantitative detection and imaging of endogenous CYP3A activity in various living systems, thereby providing a high-throughput screening system enabling evaluation of MBI-associated hepatotoxicity by CYP3A. Using BN-1 as a fluorescent molecular tool facilitates the efficient discovery and characterization of CYP3A-induced MBI in natural systems.</p

    Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury

    Get PDF
    Carboxylesterase 2 (CES2), an endoplasmic reticulum (ER) located phase I enzyme, plays a vital role in the metabolism of various endogenous and exogenous substances, and is regarded as an important target for the design of prodrugs. Unfortunately, superior highly selective ER targeting fluorescent probes for monitoring of CES2 are not currently available. Herein, we report an ER targeting CES2 selective and sensitive ratiometric fluorescent probe ERNB based on the ER localizing group p-toluenesulfonamide. ERNB possessed high specificity, sensitivity, and exhibited excellent subcellular localization when compared to commercial ER tracker, and was used to image CES2 in the ER of living cells. Additionally, using ERNB we evaluated the CES2 regulation under d,l-dithiothreitol and tunicamycin-induced ER stress. Furthermore, we determined the down regulation of CES2 activity and expression in the acetaminophen-induced acute liver injury model. On the basis of these results, we conclude that ERNB is a promising tool for highlighting the role of CES2 in the ER and in exploring the role of CES2 in the development of diseases associated with ER stress.</p

    Visual High-Throughput Screening for Developing a Fatty Acid Amide Hydrolase Natural Inhibitor Based on an Enzyme-Activated Fluorescent Probe

    Get PDF
    Fatty acid amide hydrolase (FAAH) is an important drug target for the treatment of many disease related conditions such as pain, inflammation, and mood disorders due to its vital role in the metabolism of endocannabinoid. In our present work, a FAAH-activated fluorescent probe named THPO was developed, which possessed high selectivity and excellent sensitivity for FAAH in complex systems. Critically, its metabolite 7-amino-3H-phenoxazin-3-one (AHPO) has long excitation and emission wavelengths and high fluorescence quantum yield, which are necessary for monitoring the activity of FAAH in living systems. In addition, a visual high-throughput screening method for FAAH inhibitors was established using THPO, which resulted in the discovery of an efficient natural inhibitor Neobavaisoflavone that was identified from 68 traditional herbal medicines. These results indicated that THPO can be used as a molecular tool for the rapid evaluation of FAAH activity in complex systems as well as providing an effective approach to screen FAAH inhibitors and providing a boost for the discovery of therapeutic agents toward FAAH related diseases. </p

    Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury

    Get PDF
    Carboxylesterase 2 (CES2), an endoplasmic reticulum (ER) located phase I enzyme, plays a vital role in the metabolism of various endogenous and exogenous substances, and is regarded as an important target for the design of prodrugs. Unfortunately, superior highly selective ER targeting fluorescent probes for monitoring of CES2 are not currently available. Herein, we report an ER targeting CES2 selective and sensitive ratiometric fluorescent probe ERNB based on the ER localizing group p-toluenesulfonamide. ERNB possessed high specificity, sensitivity, and exhibited excellent subcellular localization when compared to commercial ER tracker, and was used to image CES2 in the ER of living cells. Additionally, using ERNB we evaluated the CES2 regulation under d,l-dithiothreitol and tunicamycin-induced ER stress. Furthermore, we determined the down regulation of CES2 activity and expression in the acetaminophen-induced acute liver injury model. On the basis of these results, we conclude that ERNB is a promising tool for highlighting the role of CES2 in the ER and in exploring the role of CES2 in the development of diseases associated with ER stress.</p

    Molecular Design Strategy to Construct the Near-Infrared Fluorescent Probe for Selectively Sensing Human Cytochrome P450 2J2

    Get PDF
    Cytochrome P450 2J2 (CYP2J2), a key enzyme responsible for oxidative metabolism of various xenobiotics and endogenous compounds, participates in a diverse array of physiological and pathological processes in humans. Its biological role in tumorigenesis and cancer diagnosis remains poorly understood, owing to the lack of molecular tools suitable for real-time monitoring CYP2J2 in complex biological systems. Using molecular design principles we were able to modify the distance between the catalytic unit and metabolic recognition moiety, allowing us to develop a CYP2J2 selective fluorescent probe using a near-infrared fluorophore (E)-2-(2-(6-hydroxy-2, 3-dihydro-1H-xanthen-4-yl)vinyl)-3,3- dimethyl-1-propyl-3H-indol-1-ium iodide (HXPI). To improve the reactivity and isoform specificity, a self-immolative linker was introduced to the HXPI derivatives in order to better fit the narrow substrate channel of CYP2J2, the modification effectively shortened the spatial distance between the metabolic moiety (O-alkyl group) and catalytic center of CYP2J2. After screening a panel of O-alkylated HXPI derivatives, BnXPI displayed the best combination of specificity, sensitivity and applicability for detecting CYP2J2 in vitro and in vivo. Upon O-demethylation by CYP2J2, a self-immolative reaction occurred spontaneously via 1,6-elimination of p-hydroxybenzyl resulting in the release of HXPI. Allowing BnXPI to be successfully used to monitor CYP2J2 activity in real-time for various living systems including cells, tumor tissues, and tumor-bearing animals. In summary, our practical strategy could help the development of a highly specific and broadly applicable tool for monitoring CYP2J2, which offers great promise for exploring the biological functions of CYP2J2 in tumorigenesis.</p

    Molecular Design Strategy to Construct the Near-Infrared Fluorescent Probe for Selectively Sensing Human Cytochrome P450 2J2

    Get PDF
    Cytochrome P450 2J2 (CYP2J2), a key enzyme responsible for oxidative metabolism of various xenobiotics and endogenous compounds, participates in a diverse array of physiological and pathological processes in humans. Its biological role in tumorigenesis and cancer diagnosis remains poorly understood, owing to the lack of molecular tools suitable for real-time monitoring CYP2J2 in complex biological systems. Using molecular design principles, we were able to modify the distance between the catalytic unit and metabolic recognition moiety, allowing us to develop a CYP2J2 selective fluorescent probe using a near-infrared fluorophore (E)-2-(2-(6-hydroxy-2, 3-dihydro-1H-xanthen-4-yl)­vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium iodide (HXPI). To improve the reactivity and isoform specificity, a self-immolative linker was introduced to the HXPI derivatives in order to better fit the narrow substrate channel of CYP2J2, the modification effectively shortened the spatial distance between the metabolic moiety (O-alkyl group) and catalytic center of CYP2J2. After screening a panel of O-alkylated HXPI derivatives, BnXPI displayed the best combination of specificity, sensitivity and applicability for detecting CYP2J2 in vitro and in vivo. Upon O-demethylation by CYP2J2, a self-immolative reaction occurred spontaneously via 1,6-elimination of p-hydroxybenzyl resulting in the release of HXPI. Allowing BnXPI to be successfully used to monitor CYP2J2 activity in real-time for various living systems including cells, tumor tissues, and tumor-bearing animals. In summary, our practical strategy could help the development of a highly specific and broadly applicable tool for monitoring CYP2J2, which offers great promise for exploring the biological functions of CYP2J2 in tumorigenesis
    corecore