17 research outputs found

    An approach for heavy metal pollution detected from spatio-temporal stability of stress in rice using satellite images

    Get PDF
    Stable stressors on crops (e.g., salts, heavy metals), which are characterized by stable spatial patterns over time, are harmful to agricultural production and food security. Satellite data provide temporally and spatially continuous synoptic observations of stable stress on crops. This study presents a method for identifying rice under stable stress (i.e., Cd stress) and exploring its spatio-temporal characteristics indicators. The study area is a major rice growing region located in Hunan Province, China. Moderate-resolution imaging spectroradiometer (MODIS) and Landsat images from 2008–2017 as well as in situ measurements were collected. The coupling of a leaf canopy radiative transfer model with the World Food Study Model (WOFOST) via a wavelet transform isolated the effects of Cd stress from other abrupt stressors. An area wavelet transform stress signal (AWTS), based on a time-series Enhanced Vegetation Index (EVI), was used to detect rice under Cd stress, and its spatio-temporal variation metrics explored. The results indicate that spatial variation coefficients (SVC) of AWTS in the range of 0–1 ha d a coverage area greater than 70% in each experimental region, regardless of the year. Over ten years, the temporal variation coefficients (TVC) of AWTS in the range of 0–1 occurred frequently (more than 60% of the time). In addition, the Pearson correlation coefficient of AWTS over two consecutive years was usually greater than 0.5. We conclude that a combination of multi-year satellite-derived vegetation index data with a physical model simulation is an effective and novel method for detecting crops under environmental stress. A wavelet transform proved promising in differentiating between the effects of stable stress and abrupt stress on rice and may offer a way forward for diagnosing crop stress at continental and global scales

    Extraction of Rice Heavy Metal Stress Signal Features Based on Long Time Series Leaf Area Index Data Using Ensemble Empirical Mode Decomposition

    No full text
    The use of remote sensing technology to diagnose heavy metal stress in crops is of great significance for environmental protection and food security. However, in the natural farmland ecosystem, various stressors could have a similar influence on crop growth, therefore making heavy metal stress difficult to identify accurately, so this is still not a well resolved scientific problem and a hot topic in the field of agricultural remote sensing. This study proposes a method that uses Ensemble Empirical Mode Decomposition (EEMD) to obtain the heavy metal stress signal features on a long time scale. The method operates based on the Leaf Area Index (LAI) simulated by the Enhanced World Food Studies (WOFOST) model, assimilated with remotely sensed data. The following results were obtained: (i) the use of EEMD was effective in the extraction of heavy metal stress signals by eliminating the intra-annual and annual components; (ii) LAIdf (The first derivative of the sum of the interannual component and residual) can preferably reflect the stable feature responses to rice heavy metal stress. LAIdf showed stability with an R2 of greater than 0.9 in three growing stages, and the stability is optimal in June. This study combines the spectral characteristics of the stress effect with the time characteristics, and confirms the potential of long-term remotely sensed data for improving the accuracy of crop heavy metal stress identification

    Extraction of Rice Heavy Metal Stress Signal Features Based on Long Time Series Leaf Area Index Data Using Ensemble Empirical Mode Decomposition

    No full text
    The use of remote sensing technology to diagnose heavy metal stress in crops is of great significance for environmental protection and food security. However, in the natural farmland ecosystem, various stressors could have a similar influence on crop growth, therefore making heavy metal stress difficult to identify accurately, so this is still not a well resolved scientific problem and a hot topic in the field of agricultural remote sensing. This study proposes a method that uses Ensemble Empirical Mode Decomposition (EEMD) to obtain the heavy metal stress signal features on a long time scale. The method operates based on the Leaf Area Index (LAI) simulated by the Enhanced World Food Studies (WOFOST) model, assimilated with remotely sensed data. The following results were obtained: (i) the use of EEMD was effective in the extraction of heavy metal stress signals by eliminating the intra-annual and annual components; (ii) LAIdf (The first derivative of the sum of the interannual component and residual) can preferably reflect the stable feature responses to rice heavy metal stress. LAIdf showed stability with an R2 of greater than 0.9 in three growing stages, and the stability is optimal in June. This study combines the spectral characteristics of the stress effect with the time characteristics, and confirms the potential of long-term remotely sensed data for improving the accuracy of crop heavy metal stress identification

    Harnessing the runoff reduction potential of urban bioswales as an adaptation response to climate change

    No full text
    Nature-based solutions (NbS), including China's Sponge City Program (SCP), can address the challenges urban communities face due to surface runoff and flooding. The current capacity of SCP facilities in urban environments falls short of meeting the demands placed on communities by climate change. Bioswales are a form of SCP facility that plays an important role in reducing surface runoff by promoting infiltration. This study assesses the potential of SCP facilities to reduce runoff in urban communities under climate change using the storm water management model. The study site in Ningbo, China, was used to evaluate the potential role of bioswales in reducing runoff risks from climate change. We found that bioswales were most effective in scenarios when rainfall peaks occurred early and were less effective in right-skewed rainfall events. The overall performance of SCP facilities was similar across all climate scenarios. To maintain the current protection level of SCP facilities, bioswales would need to cover at least 4% of the catchment area. These findings from Ningbo provide a useful method for assessing NbS in other regions and indicative values for the increase in the bioswale coverage needed to adapt to climate change

    Multi-Dimensional Evaluation of Ecosystem Health in China’s Loess Plateau Based on Function-Oriented Metrics and BFAST Algorithm

    No full text
    China’s Loess Plateau (CLP) is a typical semi-arid region and is very sensitive to climate and human activity. Under the ecological restoration project, vegetation coverage increased significantly, but the limitation of climate and other factors has meant that vegetation mortality was relatively high. Therefore, it is of great significance to evaluate the ecosystem health in the CLP in terms of the sustainability of ecological restoration projects. The aim of this study is to propose a multi-dimensional assessment method to investigate vegetation health changes in the CLP based on BFAST and BFAST01 algorithms. To achieve this, we constructed local dimension health indexes (the number of disturbances and recovery rate) and overall dimension health indexes (trend types) based on the gross primary productivity (GPP) and vegetation evapotranspiration (Ec) data of the study area from 2001 to 2020 which was collected from the Google Earth Engine (GEE) platform. The result revealed the following. More than 90% of disturbance pixels of GPP and Ec in the short-term change only once and more than 60% of pixels recover after disturbance. However, the recovery rate after disturbance is slow, and the interval with the largest proportion is 0–0.00015. The long-term trend mostly exhibited a monotonic increasing trend. These results indicate that the function of the ecosystem on the CLP has been improved, but the resilience of vegetation is weak. In conclusion, the combination of the local dimension and overall dimension analysis can comprehensively reveal information about the CLP’s vegetation health in the past two decades, and that the method will open new perspectives and generate new knowledge about vegetation health in the CLP

    An Object- and Shapelet-Based Method for Mapping Planted Forest Dynamics from Landsat Time Series

    No full text
    Large-scale afforestation in arid and semi-arid areas with fragile ecosystems for the purpose of restoring degradation and mitigating climate change has raised issues of decreased groundwater recharge and ambiguous climatic benefits. An accurate planted forest mapping method is necessary to explore the impacts of afforestation expansion on fragile ecosystems. However, distinguishing planted forests from natural forests using remote sensing technology is not a trivial task due to their strong spectral similarities, even when assisted by phenological variables. In this study, we developed an object- and shapelet-based (OASB) method for mapping the planted forests of the Ningxia Hui Autonomous Region (NHAR), China in 2020 and for tracing the planting years between 1991 and 2020. The novel method consists of two components: (1) a simple non-iterative clustering to yield homogenous objects for building an improved time series; (2) a shapelet-based classification to distinguish the planted forests from the natural forests and to estimate the planting year, by detecting the temporal characteristics representing the planting activities. The created map accurately depicted the planted forests of the NHAR in 2020, with an overall accuracy of 87.3% (Kappa = 0.82). The area of the planted forest was counted as 0.56 million ha, accounting for 67% of the total forest area. Additionally, the planting year calendar (RMSE = 2.46 years) illustrated that the establishment of the planted forests matched the implemented ecological restoration initiatives over the past decades. Overall, the OASB has great potential for mapping the planted forests in the NHAR or other arid and semi-arid regions, and the map products derived from this method are conducive to evaluating forestry eco-engineering projects and facilitating the sustainable development of forest ecosystems

    An Object- and Shapelet-Based Method for Mapping Planted Forest Dynamics from Landsat Time Series

    No full text
    Large-scale afforestation in arid and semi-arid areas with fragile ecosystems for the purpose of restoring degradation and mitigating climate change has raised issues of decreased groundwater recharge and ambiguous climatic benefits. An accurate planted forest mapping method is necessary to explore the impacts of afforestation expansion on fragile ecosystems. However, distinguishing planted forests from natural forests using remote sensing technology is not a trivial task due to their strong spectral similarities, even when assisted by phenological variables. In this study, we developed an object- and shapelet-based (OASB) method for mapping the planted forests of the Ningxia Hui Autonomous Region (NHAR), China in 2020 and for tracing the planting years between 1991 and 2020. The novel method consists of two components: (1) a simple non-iterative clustering to yield homogenous objects for building an improved time series; (2) a shapelet-based classification to distinguish the planted forests from the natural forests and to estimate the planting year, by detecting the temporal characteristics representing the planting activities. The created map accurately depicted the planted forests of the NHAR in 2020, with an overall accuracy of 87.3% (Kappa = 0.82). The area of the planted forest was counted as 0.56 million ha, accounting for 67% of the total forest area. Additionally, the planting year calendar (RMSE = 2.46 years) illustrated that the establishment of the planted forests matched the implemented ecological restoration initiatives over the past decades. Overall, the OASB has great potential for mapping the planted forests in the NHAR or other arid and semi-arid regions, and the map products derived from this method are conducive to evaluating forestry eco-engineering projects and facilitating the sustainable development of forest ecosystems

    Historical Dynamic Mapping of Eucalyptus Plantations in Guangxi during 1990–2019 Based on Sliding-Time-Window Change Detection Using Dense Landsat Time-Series Data

    No full text
    Eucalyptus plantations are expanding rapidly in southern China owing to their short rotation periods and high wood yields. Determining the plantation dynamics of eucalyptus plantations facilitates accurate operational planning, maximizes benefits, and allows the scientific management and sustainable development of eucalyptus plantations. This study proposes a sliding-time-window change detection (STWCD) approach for the holistic characterization and analysis of eucalyptus plantation dynamics between 1990 and 2019 through dense Landsat time-series data. To achieve this, pre-processing was first conducted to obtain high-quality reflectance data and the monthly composite maximum normalized-difference vegetation index (NDVI) time series was determined for each Landsat pixel. Second, a sliding time window was used to segment the time series and obtain the NDVI change characteristics of the subsequent segments, and a sliding time window-based LandTrendr change detection algorithm was applied to detect the crucial growth or harvesting phases of the eucalyptus plantations. Third, pattern-matching technology was adopted based on the change detection results to determine the characteristics of the eucalyptus planting dynamics. Finally, we identified the management history of the eucalyptus plantations, including planting times, generations, and rotation cycles. The overall accuracy of eucalyptus identification was 90.08%, and the planting years of the validation samples and the planting years estimated by our algorithm revealed an apparent correlation of R2 = 0.98. The results showed that successive generations were mainly first- and second-generations, accounting for 75.79% and 19.83% of the total eucalyptus area, respectively. The rotation cycles of the eucalyptus plantations were predominantly in the range of 4–8 years. This study provides an effective approach for identifying eucalyptus plantation dynamics that can be applied to other short-rotation plantations

    Integrating satellite-based passive microwave and optically sensed observations to evaluating the spatio-temporal dynamics of vegetation health in the red soil regions of southern China

    No full text
    Attentions over the health of evergreen vegetation are increasing owing to frequently occurrence of recent disturbance events (i.e. soil erosion, logging activities, and afforestation). However, vegetation indices that characterize canopy greenness have limitations in spectral saturation for representing the growth states of densely vegetated areas, and the continuous acquisition of satellite-derived vegetation functional metrics depends on the availability of clear image observations. This study investigated the vegetation health dynamics (1993–2012) in the red soil regions of southern China using satellite observations based task-oriented metrics, including the Normalized Difference Vegetation Index (NDVI), Vegetation Water Content (VWC), and Aboveground Biomass Carbon (ABC). The results indicated that the total number of pixels with significant changes (SC) was 214, 1,186, and 794 for the NDVI, VWC, and ABC indices, respectively. More than 90% of the SC pixels in the three metrics exhibited increasing trends, which were primarily observed in mountainous areas. Pixels that exhibited a continuously declining trend were discretely distributed throughout the entire study area. Among the SC pixels, vegetation in major parts of the study area was disturbed by abrupt events. In the NDVI, VWC, and ABC, the frequency of abrupt changes increased after 2000, coinciding with the launch of the Natural Forest Conservation Program (NFCP) in 2000–2001. For regions with abrupt changes, four patterns were further observed based on the indices: the continued increases (pattern-1), sustained decreases (pattern-2), recovery growth after an initial decline (pattern-3), and significant decreases after initial growth (pattern-4). Pattern-1 appeared more frequently than the other three patterns. This study indicates that vegetation in most areas was optimally developed and exhibited a healthier tendency compared with previous growth states. Notably, the presence of an increasingly unhealthy vegetation state was observed in the northeastern region of the study area. Satellite derived datasets and synergetic use of indicators contribute to understanding the changes in the vegetation health in the entire red soil regions in southern China. Thus, this study acts as a reference for forest management and soil erosion control

    Identification of Ecological Restoration Approaches and Effects Based on the OO-CCDC Algorithm in an Ecologically Fragile Region

    No full text
    A full understanding of the patterns, trends, and strategies for long-term ecosystem changes helps decision-makers evaluate the effectiveness of ecological restoration projects. This study identified the ecological restoration approaches on planted forest, natural forest, and natural grassland protection during 2000–2022 based on a developed object-oriented continuous change detection and classification (OO-CCDC) method. Taking the Loess hilly region in the southern Ningxia Hui Autonomous Region, China as a case study, we assessed the ecological effects after protecting forest or grassland automatically and continuously by highlighting the location and change time of positive or negative effects. The results showed that the accuracy of ecological restoration approaches extraction was 90.73%, and the accuracies of the ecological restoration effects were 86.1% in time and 84.4% in space. A detailed evaluation from 2000 to 2022 demonstrated that positive effects peaked in 2013 (1262.69 km2), while the highest negative effects were observed in 2017 (54.54 km2). In total, 94.39% of the planted forests, 99.56% of the natural forest protection, and 62.36% of the grassland protection were in a stable pattern, and 35.37% of the natural grassland displayed positive effects, indicating a proactive role for forest management and ecological restoration in an ecologically fragile region. The negative effects accounted for a small proportion, only 2.41% of the planted forests concentrated in Pengyang County and 2.62% of the natural grassland protection mainly distributed around the farmland in the central-eastern part of the study area. By highlighting regions with positive effects as acceptable references and regions with negative effects as essential conservation objects, this study provides valuable insights for evaluating the effectiveness of the integrated ecological restoration pattern and determining the configuration of ecological restoration measures
    corecore